Metamath Proof Explorer


Theorem grpplusfo

Description: The group addition operation is a function onto the base set/set of group elements. (Contributed by NM, 30-Oct-2006) (Revised by AV, 30-Aug-2021)

Ref Expression
Hypotheses grpplusf.1 B = Base G
grpplusf.2 F = + 𝑓 G
Assertion grpplusfo G Grp F : B × B onto B

Proof

Step Hyp Ref Expression
1 grpplusf.1 B = Base G
2 grpplusf.2 F = + 𝑓 G
3 grpmnd G Grp G Mnd
4 1 2 mndpfo G Mnd F : B × B onto B
5 3 4 syl G Grp F : B × B onto B