Database
BASIC ALGEBRAIC STRUCTURES
Groups
Definition and basic properties
grpplusfo
Metamath Proof Explorer
Description: The group addition operation is a function onto the base set/set of
group elements. (Contributed by NM , 30-Oct-2006) (Revised by AV , 30-Aug-2021)
Ref
Expression
Hypotheses
grpplusf.1
⊢ B = Base G
grpplusf.2
⊢ F = + 𝑓 ⁡ G
Assertion
grpplusfo
⊢ G ∈ Grp → F : B × B ⟶ onto B
Proof
Step
Hyp
Ref
Expression
1
grpplusf.1
⊢ B = Base G
2
grpplusf.2
⊢ F = + 𝑓 ⁡ G
3
grpmnd
⊢ G ∈ Grp → G ∈ Mnd
4
1 2
mndpfo
⊢ G ∈ Mnd → F : B × B ⟶ onto B
5
3 4
syl
⊢ G ∈ Grp → F : B × B ⟶ onto B