Metamath Proof Explorer


Theorem grppnpcan2

Description: Cancellation law for mixed addition and subtraction. ( pnpcan2 analog.) (Contributed by NM, 15-Feb-2008) (Revised by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses grpsubadd.b B = Base G
grpsubadd.p + ˙ = + G
grpsubadd.m - ˙ = - G
Assertion grppnpcan2 G Grp X B Y B Z B X + ˙ Z - ˙ Y + ˙ Z = X - ˙ Y

Proof

Step Hyp Ref Expression
1 grpsubadd.b B = Base G
2 grpsubadd.p + ˙ = + G
3 grpsubadd.m - ˙ = - G
4 simpl G Grp X B Y B Z B G Grp
5 1 2 grpcl G Grp X B Z B X + ˙ Z B
6 5 3adant3r2 G Grp X B Y B Z B X + ˙ Z B
7 simpr3 G Grp X B Y B Z B Z B
8 simpr2 G Grp X B Y B Z B Y B
9 1 2 3 grpsubsub4 G Grp X + ˙ Z B Z B Y B X + ˙ Z - ˙ Z - ˙ Y = X + ˙ Z - ˙ Y + ˙ Z
10 4 6 7 8 9 syl13anc G Grp X B Y B Z B X + ˙ Z - ˙ Z - ˙ Y = X + ˙ Z - ˙ Y + ˙ Z
11 1 2 3 grppncan G Grp X B Z B X + ˙ Z - ˙ Z = X
12 11 3adant3r2 G Grp X B Y B Z B X + ˙ Z - ˙ Z = X
13 12 oveq1d G Grp X B Y B Z B X + ˙ Z - ˙ Z - ˙ Y = X - ˙ Y
14 10 13 eqtr3d G Grp X B Y B Z B X + ˙ Z - ˙ Y + ˙ Z = X - ˙ Y