Metamath Proof Explorer


Theorem grpprop

Description: If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by NM, 11-Oct-2013)

Ref Expression
Hypotheses grpprop.b Base K = Base L
grpprop.p + K = + L
Assertion grpprop K Grp L Grp

Proof

Step Hyp Ref Expression
1 grpprop.b Base K = Base L
2 grpprop.p + K = + L
3 eqidd Base K = Base K
4 1 a1i Base K = Base L
5 2 oveqi x + K y = x + L y
6 5 a1i x Base K y Base K x + K y = x + L y
7 3 4 6 grppropd K Grp L Grp
8 7 mptru K Grp L Grp