Database
BASIC ALGEBRAIC STRUCTURES
Groups
Definition and basic properties
grppropstr
Metamath Proof Explorer
Description: Generalize a specific 2-element group L to show that any set K
with the same (relevant) properties is also a group. (Contributed by NM , 28-Oct-2012) (Revised by Mario Carneiro , 6-Jan-2015)
Ref
Expression
Hypotheses
grppropstr.b
⊢ Base K = B
grppropstr.p
⊢ + K = + ˙
grppropstr.l
⊢ L = Base ndx B + ndx + ˙
Assertion
grppropstr
⊢ K ∈ Grp ↔ L ∈ Grp
Proof
Step
Hyp
Ref
Expression
1
grppropstr.b
⊢ Base K = B
2
grppropstr.p
⊢ + K = + ˙
3
grppropstr.l
⊢ L = Base ndx B + ndx + ˙
4
fvex
⊢ Base K ∈ V
5
1 4
eqeltrri
⊢ B ∈ V
6
3
grpbase
⊢ B ∈ V → B = Base L
7
5 6
ax-mp
⊢ B = Base L
8
1 7
eqtri
⊢ Base K = Base L
9
fvex
⊢ + K ∈ V
10
2 9
eqeltrri
⊢ + ˙ ∈ V
11
3
grpplusg
⊢ + ˙ ∈ V → + ˙ = + L
12
10 11
ax-mp
⊢ + ˙ = + L
13
2 12
eqtri
⊢ + K = + L
14
8 13
grpprop
⊢ K ∈ Grp ↔ L ∈ Grp