Database BASIC ALGEBRAIC STRUCTURES Groups Definition and basic properties grppropstr  
				
		 
		
			
		 
		Description:   Generalize a specific 2-element group L  to show that any set K 
       with the same (relevant) properties is also a group.  (Contributed by NM , 28-Oct-2012)   (Revised by Mario Carneiro , 6-Jan-2015) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						grppropstr.b   ⊢   Base  K =  B       
					 
					
						grppropstr.p   ⊢   +  K =  +  ˙      
					 
					
						grppropstr.l   ⊢   L  =    Base  ndx B     +  ndx +  ˙          
					 
				
					Assertion 
					grppropstr    ⊢   K  ∈  Grp    ↔   L  ∈  Grp         
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							grppropstr.b  ⊢   Base  K =  B       
						
							2 
								
							 
							grppropstr.p  ⊢   +  K =  +  ˙      
						
							3 
								
							 
							grppropstr.l  ⊢   L  =    Base  ndx B     +  ndx +  ˙          
						
							4 
								
							 
							fvex  ⊢   Base  K ∈  V       
						
							5 
								1  4 
							 
							eqeltrri  ⊢   B  ∈  V       
						
							6 
								3 
							 
							grpbase   ⊢   B  ∈  V    →   B  =  Base  L        
						
							7 
								5  6 
							 
							ax-mp  ⊢   B  =  Base  L      
						
							8 
								1  7 
							 
							eqtri  ⊢   Base  K =  Base  L      
						
							9 
								
							 
							fvex  ⊢   +  K ∈  V       
						
							10 
								2  9 
							 
							eqeltrri  ⊢   +  ˙ ∈  V       
						
							11 
								3 
							 
							grpplusg   ⊢   +  ˙ ∈  V    →   +  ˙ =  +  L        
						
							12 
								10  11 
							 
							ax-mp  ⊢   +  ˙ =  +  L      
						
							13 
								2  12 
							 
							eqtri  ⊢   +  K =  +  L      
						
							14 
								8  13 
							 
							grpprop   ⊢   K  ∈  Grp    ↔   L  ∈  Grp