Metamath Proof Explorer


Theorem grpridd

Description: The identity element of a group is a right identity. Deduction associated with grprid . (Contributed by SN, 29-Jan-2025)

Ref Expression
Hypotheses grpbn0.b B = Base G
grplid.p + ˙ = + G
grplid.o 0 ˙ = 0 G
grplidd.g φ G Grp
grplidd.1 φ X B
Assertion grpridd φ X + ˙ 0 ˙ = X

Proof

Step Hyp Ref Expression
1 grpbn0.b B = Base G
2 grplid.p + ˙ = + G
3 grplid.o 0 ˙ = 0 G
4 grplidd.g φ G Grp
5 grplidd.1 φ X B
6 1 2 3 grprid G Grp X B X + ˙ 0 ˙ = X
7 4 5 6 syl2anc φ X + ˙ 0 ˙ = X