Metamath Proof Explorer


Theorem grprinv

Description: The right inverse of a group element. (Contributed by NM, 24-Aug-2011) (Revised by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses grpinv.b B = Base G
grpinv.p + ˙ = + G
grpinv.u 0 ˙ = 0 G
grpinv.n N = inv g G
Assertion grprinv G Grp X B X + ˙ N X = 0 ˙

Proof

Step Hyp Ref Expression
1 grpinv.b B = Base G
2 grpinv.p + ˙ = + G
3 grpinv.u 0 ˙ = 0 G
4 grpinv.n N = inv g G
5 1 2 grpcl G Grp x B y B x + ˙ y B
6 1 3 grpidcl G Grp 0 ˙ B
7 1 2 3 grplid G Grp x B 0 ˙ + ˙ x = x
8 1 2 grpass G Grp x B y B z B x + ˙ y + ˙ z = x + ˙ y + ˙ z
9 1 2 3 grpinvex G Grp x B y B y + ˙ x = 0 ˙
10 simpr G Grp X B X B
11 1 4 grpinvcl G Grp X B N X B
12 1 2 3 4 grplinv G Grp X B N X + ˙ X = 0 ˙
13 5 6 7 8 9 10 11 12 grprinvd G Grp X B X + ˙ N X = 0 ˙