Metamath Proof Explorer
		
		
		
		Description:  The right inverse of a group element.  Deduction associated with
       grprinv .  (Contributed by SN, 29-Jan-2025)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | grplinvd.b |  | 
					
						|  |  | grplinvd.p |  | 
					
						|  |  | grplinvd.u |  | 
					
						|  |  | grplinvd.n |  | 
					
						|  |  | grplinvd.g |  | 
					
						|  |  | grplinvd.1 |  | 
				
					|  | Assertion | grprinvd |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grplinvd.b |  | 
						
							| 2 |  | grplinvd.p |  | 
						
							| 3 |  | grplinvd.u |  | 
						
							| 4 |  | grplinvd.n |  | 
						
							| 5 |  | grplinvd.g |  | 
						
							| 6 |  | grplinvd.1 |  | 
						
							| 7 | 1 2 3 4 | grprinv |  | 
						
							| 8 | 5 6 7 | syl2anc |  |