Database
BASIC ALGEBRAIC STRUCTURES
Groups
Definition and basic properties
grpsgrp
Next ⟩
grpmgmd
Metamath Proof Explorer
Ascii
Unicode
Theorem
grpsgrp
Description:
A group is a semigroup.
(Contributed by
AV
, 28-Aug-2021)
Ref
Expression
Assertion
grpsgrp
⊢
G
∈
Grp
→
G
∈
Smgrp
Proof
Step
Hyp
Ref
Expression
1
grpmnd
⊢
G
∈
Grp
→
G
∈
Mnd
2
mndsgrp
⊢
G
∈
Mnd
→
G
∈
Smgrp
3
1
2
syl
⊢
G
∈
Grp
→
G
∈
Smgrp