Metamath Proof Explorer


Theorem grpsgrp

Description: A group is a semigroup. (Contributed by AV, 28-Aug-2021)

Ref Expression
Assertion grpsgrp G Grp G Smgrp

Proof

Step Hyp Ref Expression
1 grpmnd G Grp G Mnd
2 mndsgrp G Mnd G Smgrp
3 1 2 syl G Grp G Smgrp