Step |
Hyp |
Ref |
Expression |
1 |
|
grpsubadd.b |
|
2 |
|
grpsubadd.p |
|
3 |
|
grpsubadd.m |
|
4 |
|
eqid |
|
5 |
1 2 4 3
|
grpsubval |
|
6 |
5
|
3adant3 |
|
7 |
6
|
adantl |
|
8 |
7
|
eqeq1d |
|
9 |
|
simpl |
|
10 |
|
simpr1 |
|
11 |
1 4
|
grpinvcl |
|
12 |
11
|
3ad2antr2 |
|
13 |
1 2
|
grpcl |
|
14 |
9 10 12 13
|
syl3anc |
|
15 |
|
simpr3 |
|
16 |
|
simpr2 |
|
17 |
1 2
|
grprcan |
|
18 |
9 14 15 16 17
|
syl13anc |
|
19 |
1 2
|
grpass |
|
20 |
9 10 12 16 19
|
syl13anc |
|
21 |
|
eqid |
|
22 |
1 2 21 4
|
grplinv |
|
23 |
22
|
3ad2antr2 |
|
24 |
23
|
oveq2d |
|
25 |
1 2 21
|
grprid |
|
26 |
25
|
3ad2antr1 |
|
27 |
20 24 26
|
3eqtrd |
|
28 |
27
|
eqeq1d |
|
29 |
8 18 28
|
3bitr2d |
|
30 |
|
eqcom |
|
31 |
29 30
|
bitrdi |
|