Metamath Proof Explorer


Theorem grpsubadd0sub

Description: Subtraction expressed as addition of the difference of the identity element and the subtrahend. (Contributed by AV, 9-Nov-2019)

Ref Expression
Hypotheses grpsubid.b B = Base G
grpsubid.o 0 ˙ = 0 G
grpsubid.m - ˙ = - G
grpsubadd0sub.p + ˙ = + G
Assertion grpsubadd0sub G Grp X B Y B X - ˙ Y = X + ˙ 0 ˙ - ˙ Y

Proof

Step Hyp Ref Expression
1 grpsubid.b B = Base G
2 grpsubid.o 0 ˙ = 0 G
3 grpsubid.m - ˙ = - G
4 grpsubadd0sub.p + ˙ = + G
5 eqid inv g G = inv g G
6 1 4 5 3 grpsubval X B Y B X - ˙ Y = X + ˙ inv g G Y
7 6 3adant1 G Grp X B Y B X - ˙ Y = X + ˙ inv g G Y
8 1 3 5 2 grpinvval2 G Grp Y B inv g G Y = 0 ˙ - ˙ Y
9 8 3adant2 G Grp X B Y B inv g G Y = 0 ˙ - ˙ Y
10 9 oveq2d G Grp X B Y B X + ˙ inv g G Y = X + ˙ 0 ˙ - ˙ Y
11 7 10 eqtrd G Grp X B Y B X - ˙ Y = X + ˙ 0 ˙ - ˙ Y