Metamath Proof Explorer


Theorem grpsubcl

Description: Closure of group subtraction. (Contributed by NM, 31-Mar-2014)

Ref Expression
Hypotheses grpsubcl.b B = Base G
grpsubcl.m - ˙ = - G
Assertion grpsubcl G Grp X B Y B X - ˙ Y B

Proof

Step Hyp Ref Expression
1 grpsubcl.b B = Base G
2 grpsubcl.m - ˙ = - G
3 1 2 grpsubf G Grp - ˙ : B × B B
4 fovrn - ˙ : B × B B X B Y B X - ˙ Y B
5 3 4 syl3an1 G Grp X B Y B X - ˙ Y B