Database
BASIC ALGEBRAIC STRUCTURES
Groups
Definition and basic properties
grpsubf
Next ⟩
grpsubcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
grpsubf
Description:
Functionality of group subtraction.
(Contributed by
Mario Carneiro
, 9-Sep-2014)
Ref
Expression
Hypotheses
grpsubcl.b
⊢
B
=
Base
G
grpsubcl.m
⊢
-
˙
=
-
G
Assertion
grpsubf
⊢
G
∈
Grp
→
-
˙
:
B
×
B
⟶
B
Proof
Step
Hyp
Ref
Expression
1
grpsubcl.b
⊢
B
=
Base
G
2
grpsubcl.m
⊢
-
˙
=
-
G
3
eqid
⊢
inv
g
⁡
G
=
inv
g
⁡
G
4
1
3
grpinvcl
⊢
G
∈
Grp
∧
y
∈
B
→
inv
g
⁡
G
⁡
y
∈
B
5
4
3adant2
⊢
G
∈
Grp
∧
x
∈
B
∧
y
∈
B
→
inv
g
⁡
G
⁡
y
∈
B
6
eqid
⊢
+
G
=
+
G
7
1
6
grpcl
⊢
G
∈
Grp
∧
x
∈
B
∧
inv
g
⁡
G
⁡
y
∈
B
→
x
+
G
inv
g
⁡
G
⁡
y
∈
B
8
5
7
syld3an3
⊢
G
∈
Grp
∧
x
∈
B
∧
y
∈
B
→
x
+
G
inv
g
⁡
G
⁡
y
∈
B
9
8
3expb
⊢
G
∈
Grp
∧
x
∈
B
∧
y
∈
B
→
x
+
G
inv
g
⁡
G
⁡
y
∈
B
10
9
ralrimivva
⊢
G
∈
Grp
→
∀
x
∈
B
∀
y
∈
B
x
+
G
inv
g
⁡
G
⁡
y
∈
B
11
1
6
3
2
grpsubfval
⊢
-
˙
=
x
∈
B
,
y
∈
B
⟼
x
+
G
inv
g
⁡
G
⁡
y
12
11
fmpo
⊢
∀
x
∈
B
∀
y
∈
B
x
+
G
inv
g
⁡
G
⁡
y
∈
B
↔
-
˙
:
B
×
B
⟶
B
13
10
12
sylib
⊢
G
∈
Grp
→
-
˙
:
B
×
B
⟶
B