Metamath Proof Explorer


Theorem grpsubf

Description: Functionality of group subtraction. (Contributed by Mario Carneiro, 9-Sep-2014)

Ref Expression
Hypotheses grpsubcl.b B = Base G
grpsubcl.m - ˙ = - G
Assertion grpsubf G Grp - ˙ : B × B B

Proof

Step Hyp Ref Expression
1 grpsubcl.b B = Base G
2 grpsubcl.m - ˙ = - G
3 eqid inv g G = inv g G
4 1 3 grpinvcl G Grp y B inv g G y B
5 4 3adant2 G Grp x B y B inv g G y B
6 eqid + G = + G
7 1 6 grpcl G Grp x B inv g G y B x + G inv g G y B
8 5 7 syld3an3 G Grp x B y B x + G inv g G y B
9 8 3expb G Grp x B y B x + G inv g G y B
10 9 ralrimivva G Grp x B y B x + G inv g G y B
11 1 6 3 2 grpsubfval - ˙ = x B , y B x + G inv g G y
12 11 fmpo x B y B x + G inv g G y B - ˙ : B × B B
13 10 12 sylib G Grp - ˙ : B × B B