Metamath Proof Explorer


Theorem grpsubfval

Description: Group subtraction (division) operation. For a shorter proof using ax-rep , see grpsubfvalALT . (Contributed by NM, 31-Mar-2014) (Revised by Stefan O'Rear, 27-Mar-2015) Remove dependency on ax-rep . (Revised by Rohan Ridenour, 17-Aug-2023) (Proof shortened by AV, 19-Feb-2024)

Ref Expression
Hypotheses grpsubval.b B = Base G
grpsubval.p + ˙ = + G
grpsubval.i I = inv g G
grpsubval.m - ˙ = - G
Assertion grpsubfval - ˙ = x B , y B x + ˙ I y

Proof

Step Hyp Ref Expression
1 grpsubval.b B = Base G
2 grpsubval.p + ˙ = + G
3 grpsubval.i I = inv g G
4 grpsubval.m - ˙ = - G
5 fveq2 g = G Base g = Base G
6 5 1 eqtr4di g = G Base g = B
7 fveq2 g = G + g = + G
8 7 2 eqtr4di g = G + g = + ˙
9 eqidd g = G x = x
10 fveq2 g = G inv g g = inv g G
11 10 3 eqtr4di g = G inv g g = I
12 11 fveq1d g = G inv g g y = I y
13 8 9 12 oveq123d g = G x + g inv g g y = x + ˙ I y
14 6 6 13 mpoeq123dv g = G x Base g , y Base g x + g inv g g y = x B , y B x + ˙ I y
15 df-sbg - 𝑔 = g V x Base g , y Base g x + g inv g g y
16 1 fvexi B V
17 2 fvexi + ˙ V
18 17 rnex ran + ˙ V
19 p0ex V
20 18 19 unex ran + ˙ V
21 df-ov x + ˙ I y = + ˙ x I y
22 fvrn0 + ˙ x I y ran + ˙
23 21 22 eqeltri x + ˙ I y ran + ˙
24 23 rgen2w x B y B x + ˙ I y ran + ˙
25 16 16 20 24 mpoexw x B , y B x + ˙ I y V
26 14 15 25 fvmpt G V - G = x B , y B x + ˙ I y
27 4 26 eqtrid G V - ˙ = x B , y B x + ˙ I y
28 fvprc ¬ G V - G =
29 4 28 eqtrid ¬ G V - ˙ =
30 fvprc ¬ G V Base G =
31 1 30 eqtrid ¬ G V B =
32 31 olcd ¬ G V B = B =
33 0mpo0 B = B = x B , y B x + ˙ I y =
34 32 33 syl ¬ G V x B , y B x + ˙ I y =
35 29 34 eqtr4d ¬ G V - ˙ = x B , y B x + ˙ I y
36 27 35 pm2.61i - ˙ = x B , y B x + ˙ I y