Metamath Proof Explorer


Theorem grpsubpropd

Description: Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015)

Ref Expression
Hypotheses grpsubpropd.b φ Base G = Base H
grpsubpropd.p φ + G = + H
Assertion grpsubpropd φ - G = - H

Proof

Step Hyp Ref Expression
1 grpsubpropd.b φ Base G = Base H
2 grpsubpropd.p φ + G = + H
3 eqidd φ a = a
4 eqidd φ Base G = Base G
5 2 oveqdr φ x Base G y Base G x + G y = x + H y
6 4 1 5 grpinvpropd φ inv g G = inv g H
7 6 fveq1d φ inv g G b = inv g H b
8 2 3 7 oveq123d φ a + G inv g G b = a + H inv g H b
9 1 1 8 mpoeq123dv φ a Base G , b Base G a + G inv g G b = a Base H , b Base H a + H inv g H b
10 eqid Base G = Base G
11 eqid + G = + G
12 eqid inv g G = inv g G
13 eqid - G = - G
14 10 11 12 13 grpsubfval - G = a Base G , b Base G a + G inv g G b
15 eqid Base H = Base H
16 eqid + H = + H
17 eqid inv g H = inv g H
18 eqid - H = - H
19 15 16 17 18 grpsubfval - H = a Base H , b Base H a + H inv g H b
20 9 14 19 3eqtr4g φ - G = - H