Metamath Proof Explorer


Theorem grptcepi

Description: All morphisms in a category converted from a group are epimorphisms. (Contributed by Zhi Wang, 23-Sep-2024)

Ref Expression
Hypotheses grptcmon.c No typesetting found for |- ( ph -> C = ( MndToCat ` G ) ) with typecode |-
grptcmon.g φ G Grp
grptcmon.b φ B = Base C
grptcmon.x φ X B
grptcmon.y φ Y B
grptcmon.h φ H = Hom C
grptcepi.e φ E = Epi C
Assertion grptcepi φ X E Y = X H Y

Proof

Step Hyp Ref Expression
1 grptcmon.c Could not format ( ph -> C = ( MndToCat ` G ) ) : No typesetting found for |- ( ph -> C = ( MndToCat ` G ) ) with typecode |-
2 grptcmon.g φ G Grp
3 grptcmon.b φ B = Base C
4 grptcmon.x φ X B
5 grptcmon.y φ Y B
6 grptcmon.h φ H = Hom C
7 grptcepi.e φ E = Epi C
8 eqid Base C = Base C
9 eqid Hom C = Hom C
10 eqid comp C = comp C
11 eqid Epi C = Epi C
12 2 grpmndd φ G Mnd
13 1 12 mndtccat φ C Cat
14 4 3 eleqtrd φ X Base C
15 5 3 eleqtrd φ Y Base C
16 8 9 10 11 13 14 15 isepi2 φ f X Epi C Y f X Hom C Y z Base C g Y Hom C z h Y Hom C z g X Y comp C z f = h X Y comp C z f g = h
17 1 ad2antrr Could not format ( ( ( ph /\ f e. ( X ( Hom ` C ) Y ) ) /\ ( z e. ( Base ` C ) /\ g e. ( Y ( Hom ` C ) z ) /\ h e. ( Y ( Hom ` C ) z ) ) ) -> C = ( MndToCat ` G ) ) : No typesetting found for |- ( ( ( ph /\ f e. ( X ( Hom ` C ) Y ) ) /\ ( z e. ( Base ` C ) /\ g e. ( Y ( Hom ` C ) z ) /\ h e. ( Y ( Hom ` C ) z ) ) ) -> C = ( MndToCat ` G ) ) with typecode |-
18 12 ad2antrr φ f X Hom C Y z Base C g Y Hom C z h Y Hom C z G Mnd
19 3 ad2antrr φ f X Hom C Y z Base C g Y Hom C z h Y Hom C z B = Base C
20 4 ad2antrr φ f X Hom C Y z Base C g Y Hom C z h Y Hom C z X B
21 5 ad2antrr φ f X Hom C Y z Base C g Y Hom C z h Y Hom C z Y B
22 simpr1 φ f X Hom C Y z Base C g Y Hom C z h Y Hom C z z Base C
23 22 19 eleqtrrd φ f X Hom C Y z Base C g Y Hom C z h Y Hom C z z B
24 eqidd φ f X Hom C Y z Base C g Y Hom C z h Y Hom C z comp C = comp C
25 eqidd φ f X Hom C Y z Base C g Y Hom C z h Y Hom C z X Y comp C z = X Y comp C z
26 17 18 19 20 21 23 24 25 mndtcco2 φ f X Hom C Y z Base C g Y Hom C z h Y Hom C z g X Y comp C z f = g + G f
27 17 18 19 20 21 23 24 25 mndtcco2 φ f X Hom C Y z Base C g Y Hom C z h Y Hom C z h X Y comp C z f = h + G f
28 26 27 eqeq12d φ f X Hom C Y z Base C g Y Hom C z h Y Hom C z g X Y comp C z f = h X Y comp C z f g + G f = h + G f
29 2 ad2antrr φ f X Hom C Y z Base C g Y Hom C z h Y Hom C z G Grp
30 simpr2 φ f X Hom C Y z Base C g Y Hom C z h Y Hom C z g Y Hom C z
31 eqidd φ f X Hom C Y z Base C g Y Hom C z h Y Hom C z Hom C = Hom C
32 17 18 19 21 23 31 mndtchom φ f X Hom C Y z Base C g Y Hom C z h Y Hom C z Y Hom C z = Base G
33 30 32 eleqtrd φ f X Hom C Y z Base C g Y Hom C z h Y Hom C z g Base G
34 simpr3 φ f X Hom C Y z Base C g Y Hom C z h Y Hom C z h Y Hom C z
35 34 32 eleqtrd φ f X Hom C Y z Base C g Y Hom C z h Y Hom C z h Base G
36 simplr φ f X Hom C Y z Base C g Y Hom C z h Y Hom C z f X Hom C Y
37 17 18 19 20 21 31 mndtchom φ f X Hom C Y z Base C g Y Hom C z h Y Hom C z X Hom C Y = Base G
38 36 37 eleqtrd φ f X Hom C Y z Base C g Y Hom C z h Y Hom C z f Base G
39 eqid Base G = Base G
40 eqid + G = + G
41 39 40 grprcan G Grp g Base G h Base G f Base G g + G f = h + G f g = h
42 29 33 35 38 41 syl13anc φ f X Hom C Y z Base C g Y Hom C z h Y Hom C z g + G f = h + G f g = h
43 28 42 bitrd φ f X Hom C Y z Base C g Y Hom C z h Y Hom C z g X Y comp C z f = h X Y comp C z f g = h
44 43 biimpd φ f X Hom C Y z Base C g Y Hom C z h Y Hom C z g X Y comp C z f = h X Y comp C z f g = h
45 44 ralrimivvva φ f X Hom C Y z Base C g Y Hom C z h Y Hom C z g X Y comp C z f = h X Y comp C z f g = h
46 16 45 mpbiran3d φ f X Epi C Y f X Hom C Y
47 46 eqrdv φ X Epi C Y = X Hom C Y
48 7 oveqd φ X E Y = X Epi C Y
49 6 oveqd φ X H Y = X Hom C Y
50 47 48 49 3eqtr4d φ X E Y = X H Y