Description: All morphisms in a category converted from a group are monomorphisms. (Contributed by Zhi Wang, 23-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grptcmon.c | |
|
| grptcmon.g | |
||
| grptcmon.b | |
||
| grptcmon.x | |
||
| grptcmon.y | |
||
| grptcmon.h | |
||
| grptcmon.m | |
||
| Assertion | grptcmon | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grptcmon.c | |
|
| 2 | grptcmon.g | |
|
| 3 | grptcmon.b | |
|
| 4 | grptcmon.x | |
|
| 5 | grptcmon.y | |
|
| 6 | grptcmon.h | |
|
| 7 | grptcmon.m | |
|
| 8 | eqid | |
|
| 9 | eqid | |
|
| 10 | eqid | |
|
| 11 | eqid | |
|
| 12 | 2 | grpmndd | |
| 13 | 1 12 | mndtccat | |
| 14 | 4 3 | eleqtrd | |
| 15 | 5 3 | eleqtrd | |
| 16 | 8 9 10 11 13 14 15 | ismon2 | |
| 17 | 1 | ad2antrr | |
| 18 | 12 | ad2antrr | |
| 19 | 3 | ad2antrr | |
| 20 | simpr1 | |
|
| 21 | 20 19 | eleqtrrd | |
| 22 | 4 | ad2antrr | |
| 23 | 5 | ad2antrr | |
| 24 | eqidd | |
|
| 25 | eqidd | |
|
| 26 | 17 18 19 21 22 23 24 25 | mndtcco2 | |
| 27 | 17 18 19 21 22 23 24 25 | mndtcco2 | |
| 28 | 26 27 | eqeq12d | |
| 29 | 2 | ad2antrr | |
| 30 | simpr2 | |
|
| 31 | eqidd | |
|
| 32 | 17 18 19 21 22 31 | mndtchom | |
| 33 | 30 32 | eleqtrd | |
| 34 | simpr3 | |
|
| 35 | 34 32 | eleqtrd | |
| 36 | simplr | |
|
| 37 | 17 18 19 22 23 31 | mndtchom | |
| 38 | 36 37 | eleqtrd | |
| 39 | eqid | |
|
| 40 | eqid | |
|
| 41 | 39 40 | grplcan | |
| 42 | 29 33 35 38 41 | syl13anc | |
| 43 | 28 42 | bitrd | |
| 44 | 43 | biimpd | |
| 45 | 44 | ralrimivvva | |
| 46 | 16 45 | mpbiran3d | |
| 47 | 46 | eqrdv | |
| 48 | 7 | oveqd | |
| 49 | 6 | oveqd | |
| 50 | 47 48 49 | 3eqtr4d | |