| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grptcmon.c |
|
| 2 |
|
grptcmon.g |
|
| 3 |
|
grptcmon.b |
|
| 4 |
|
grptcmon.x |
|
| 5 |
|
grptcmon.y |
|
| 6 |
|
grptcmon.h |
|
| 7 |
|
grptcmon.m |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
2
|
grpmndd |
|
| 13 |
1 12
|
mndtccat |
|
| 14 |
4 3
|
eleqtrd |
|
| 15 |
5 3
|
eleqtrd |
|
| 16 |
8 9 10 11 13 14 15
|
ismon2 |
|
| 17 |
1
|
ad2antrr |
|
| 18 |
12
|
ad2antrr |
|
| 19 |
3
|
ad2antrr |
|
| 20 |
|
simpr1 |
|
| 21 |
20 19
|
eleqtrrd |
|
| 22 |
4
|
ad2antrr |
|
| 23 |
5
|
ad2antrr |
|
| 24 |
|
eqidd |
|
| 25 |
|
eqidd |
|
| 26 |
17 18 19 21 22 23 24 25
|
mndtcco2 |
|
| 27 |
17 18 19 21 22 23 24 25
|
mndtcco2 |
|
| 28 |
26 27
|
eqeq12d |
|
| 29 |
2
|
ad2antrr |
|
| 30 |
|
simpr2 |
|
| 31 |
|
eqidd |
|
| 32 |
17 18 19 21 22 31
|
mndtchom |
|
| 33 |
30 32
|
eleqtrd |
|
| 34 |
|
simpr3 |
|
| 35 |
34 32
|
eleqtrd |
|
| 36 |
|
simplr |
|
| 37 |
17 18 19 22 23 31
|
mndtchom |
|
| 38 |
36 37
|
eleqtrd |
|
| 39 |
|
eqid |
|
| 40 |
|
eqid |
|
| 41 |
39 40
|
grplcan |
|
| 42 |
29 33 35 38 41
|
syl13anc |
|
| 43 |
28 42
|
bitrd |
|
| 44 |
43
|
biimpd |
|
| 45 |
44
|
ralrimivvva |
|
| 46 |
16 45
|
mpbiran3d |
|
| 47 |
46
|
eqrdv |
|
| 48 |
7
|
oveqd |
|
| 49 |
6
|
oveqd |
|
| 50 |
47 48 49
|
3eqtr4d |
|