Metamath Proof Explorer


Theorem grpvlinv

Description: Tuple-wise left inverse in groups. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses grpvlinv.b B = Base G
grpvlinv.p + ˙ = + G
grpvlinv.n N = inv g G
grpvlinv.z 0 ˙ = 0 G
Assertion grpvlinv G Grp X B I N X + ˙ f X = I × 0 ˙

Proof

Step Hyp Ref Expression
1 grpvlinv.b B = Base G
2 grpvlinv.p + ˙ = + G
3 grpvlinv.n N = inv g G
4 grpvlinv.z 0 ˙ = 0 G
5 elmapex X B I B V I V
6 5 simprd X B I I V
7 6 adantl G Grp X B I I V
8 elmapi X B I X : I B
9 8 adantl G Grp X B I X : I B
10 1 4 grpidcl G Grp 0 ˙ B
11 10 adantr G Grp X B I 0 ˙ B
12 1 3 grpinvf G Grp N : B B
13 12 adantr G Grp X B I N : B B
14 fcompt N : B B X : I B N X = x I N X x
15 12 8 14 syl2an G Grp X B I N X = x I N X x
16 1 2 4 3 grplinv G Grp y B N y + ˙ y = 0 ˙
17 16 adantlr G Grp X B I y B N y + ˙ y = 0 ˙
18 7 9 11 13 15 17 caofinvl G Grp X B I N X + ˙ f X = I × 0 ˙