Metamath Proof Explorer


Theorem grpvrinv

Description: Tuple-wise right inverse in groups. (Contributed by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses grpvlinv.b B = Base G
grpvlinv.p + ˙ = + G
grpvlinv.n N = inv g G
grpvlinv.z 0 ˙ = 0 G
Assertion grpvrinv G Grp X B I X + ˙ f N X = I × 0 ˙

Proof

Step Hyp Ref Expression
1 grpvlinv.b B = Base G
2 grpvlinv.p + ˙ = + G
3 grpvlinv.n N = inv g G
4 grpvlinv.z 0 ˙ = 0 G
5 simpll G Grp X B I x I G Grp
6 elmapi X B I X : I B
7 6 adantl G Grp X B I X : I B
8 7 ffvelrnda G Grp X B I x I X x B
9 1 2 4 3 grprinv G Grp X x B X x + ˙ N X x = 0 ˙
10 5 8 9 syl2anc G Grp X B I x I X x + ˙ N X x = 0 ˙
11 10 mpteq2dva G Grp X B I x I X x + ˙ N X x = x I 0 ˙
12 elmapex X B I B V I V
13 12 simprd X B I I V
14 13 adantl G Grp X B I I V
15 fvexd G Grp X B I x I N X x V
16 7 feqmptd G Grp X B I X = x I X x
17 1 3 grpinvf G Grp N : B B
18 fcompt N : B B X : I B N X = x I N X x
19 17 6 18 syl2an G Grp X B I N X = x I N X x
20 14 8 15 16 19 offval2 G Grp X B I X + ˙ f N X = x I X x + ˙ N X x
21 fconstmpt I × 0 ˙ = x I 0 ˙
22 21 a1i G Grp X B I I × 0 ˙ = x I 0 ˙
23 11 20 22 3eqtr4d G Grp X B I X + ˙ f N X = I × 0 ˙