Database
GRAPH THEORY
Vertices and edges
Vertices and indexed edges
The vertices and edges of a graph represented as extensible structure
grstructeld
Metamath Proof Explorer
Description: If any representation of a graph with vertices V and edges E is
an element of an arbitrary class C , then any structure with base
set V and value E in the slot for edge functions (which is such
a representation of a graph with vertices V and edges E ) is an
element of this class C . (Contributed by AV , 12-Oct-2020)
(Revised by AV , 9-Jun-2021)
Ref
Expression
Hypotheses
gropeld.g
⊢ φ → ∀ g Vtx ⁡ g = V ∧ iEdg ⁡ g = E → g ∈ C
gropeld.v
⊢ φ → V ∈ U
gropeld.e
⊢ φ → E ∈ W
grstructeld.s
⊢ φ → S ∈ X
grstructeld.f
⊢ φ → Fun ⁡ S ∖ ∅
grstructeld.d
⊢ φ → 2 ≤ dom ⁡ S
grstructeld.b
⊢ φ → Base S = V
grstructeld.e
⊢ φ → ef ⁡ S = E
Assertion
grstructeld
⊢ φ → S ∈ C
Proof
Step
Hyp
Ref
Expression
1
gropeld.g
⊢ φ → ∀ g Vtx ⁡ g = V ∧ iEdg ⁡ g = E → g ∈ C
2
gropeld.v
⊢ φ → V ∈ U
3
gropeld.e
⊢ φ → E ∈ W
4
grstructeld.s
⊢ φ → S ∈ X
5
grstructeld.f
⊢ φ → Fun ⁡ S ∖ ∅
6
grstructeld.d
⊢ φ → 2 ≤ dom ⁡ S
7
grstructeld.b
⊢ φ → Base S = V
8
grstructeld.e
⊢ φ → ef ⁡ S = E
9
1 2 3 4 5 6 7 8
grstructd
⊢ φ → [ ˙ S / g ] ˙ g ∈ C
10
sbcel1v
⊢ [ ˙ S / g ] ˙ g ∈ C ↔ S ∈ C
11
9 10
sylib
⊢ φ → S ∈ C