Metamath Proof Explorer


Theorem grstructeld

Description: If any representation of a graph with vertices V and edges E is an element of an arbitrary class C , then any structure with base set V and value E in the slot for edge functions (which is such a representation of a graph with vertices V and edges E ) is an element of this class C . (Contributed by AV, 12-Oct-2020) (Revised by AV, 9-Jun-2021)

Ref Expression
Hypotheses gropeld.g φ g Vtx g = V iEdg g = E g C
gropeld.v φ V U
gropeld.e φ E W
grstructeld.s φ S X
grstructeld.f φ Fun S
grstructeld.d φ 2 dom S
grstructeld.b φ Base S = V
grstructeld.e φ ef S = E
Assertion grstructeld φ S C

Proof

Step Hyp Ref Expression
1 gropeld.g φ g Vtx g = V iEdg g = E g C
2 gropeld.v φ V U
3 gropeld.e φ E W
4 grstructeld.s φ S X
5 grstructeld.f φ Fun S
6 grstructeld.d φ 2 dom S
7 grstructeld.b φ Base S = V
8 grstructeld.e φ ef S = E
9 1 2 3 4 5 6 7 8 grstructd φ [˙S / g]˙ g C
10 sbcel1v [˙S / g]˙ g C S C
11 9 10 sylib φ S C