Metamath Proof Explorer


Theorem grstructeld

Description: If any representation of a graph with vertices V and edges E is an element of an arbitrary class C , then any structure with base set V and value E in the slot for edge functions (which is such a representation of a graph with vertices V and edges E ) is an element of this class C . (Contributed by AV, 12-Oct-2020) (Revised by AV, 9-Jun-2021)

Ref Expression
Hypotheses gropeld.g φgVtxg=ViEdgg=EgC
gropeld.v φVU
gropeld.e φEW
grstructeld.s φSX
grstructeld.f φFunS
grstructeld.d φ2domS
grstructeld.b φBaseS=V
grstructeld.e φefS=E
Assertion grstructeld φSC

Proof

Step Hyp Ref Expression
1 gropeld.g φgVtxg=ViEdgg=EgC
2 gropeld.v φVU
3 gropeld.e φEW
4 grstructeld.s φSX
5 grstructeld.f φFunS
6 grstructeld.d φ2domS
7 grstructeld.b φBaseS=V
8 grstructeld.e φefS=E
9 1 2 3 4 5 6 7 8 grstructd φ[˙S/g]˙gC
10 sbcel1v [˙S/g]˙gCSC
11 9 10 sylib φSC