Metamath Proof Explorer


Theorem gruen

Description: A Grothendieck universe contains all subsets of itself that are equipotent to an element of the universe. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion gruen U Univ A U B U B A A U

Proof

Step Hyp Ref Expression
1 bren B A y y : B 1-1 onto A
2 f1ofo y : B 1-1 onto A y : B onto A
3 simp3l U Univ B U y : B onto A A U y : B onto A
4 forn y : B onto A ran y = A
5 3 4 syl U Univ B U y : B onto A A U ran y = A
6 fof y : B onto A y : B A
7 fss y : B A A U y : B U
8 6 7 sylan y : B onto A A U y : B U
9 grurn U Univ B U y : B U ran y U
10 8 9 syl3an3 U Univ B U y : B onto A A U ran y U
11 5 10 eqeltrrd U Univ B U y : B onto A A U A U
12 11 3expia U Univ B U y : B onto A A U A U
13 12 expd U Univ B U y : B onto A A U A U
14 2 13 syl5 U Univ B U y : B 1-1 onto A A U A U
15 14 exlimdv U Univ B U y y : B 1-1 onto A A U A U
16 15 com3r A U U Univ B U y y : B 1-1 onto A A U
17 16 expdimp A U U Univ B U y y : B 1-1 onto A A U
18 1 17 syl7bi A U U Univ B U B A A U
19 18 impd A U U Univ B U B A A U
20 19 ancoms U Univ A U B U B A A U
21 20 3impia U Univ A U B U B A A U