Metamath Proof Explorer


Theorem gruiin

Description: A Grothendieck universe contains indexed intersections of its elements. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion gruiin U Univ x A B U x A B U

Proof

Step Hyp Ref Expression
1 nfv x U Univ
2 nfii1 _ x x A B
3 2 nfel1 x x A B U
4 iinss2 x A x A B B
5 gruss U Univ B U x A B B x A B U
6 4 5 syl3an3 U Univ B U x A x A B U
7 6 3exp U Univ B U x A x A B U
8 7 com23 U Univ x A B U x A B U
9 1 3 8 rexlimd U Univ x A B U x A B U
10 9 imp U Univ x A B U x A B U