Metamath Proof Explorer


Theorem gruima

Description: A Grothendieck universe contains image sets drawn from its members. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion gruima U Univ Fun F F A U A U F A U

Proof

Step Hyp Ref Expression
1 simpl2 U Univ Fun F F A U A U Fun F
2 funrel Fun F Rel F
3 df-ima F A = ran F A
4 resres F dom F A = F dom F A
5 resdm Rel F F dom F = F
6 5 reseq1d Rel F F dom F A = F A
7 4 6 eqtr3id Rel F F dom F A = F A
8 7 rneqd Rel F ran F dom F A = ran F A
9 3 8 eqtr4id Rel F F A = ran F dom F A
10 1 2 9 3syl U Univ Fun F F A U A U F A = ran F dom F A
11 simpl1 U Univ Fun F F A U A U U Univ
12 simpr U Univ Fun F F A U A U A U
13 inss2 dom F A A
14 13 a1i U Univ Fun F F A U A U dom F A A
15 gruss U Univ A U dom F A A dom F A U
16 11 12 14 15 syl3anc U Univ Fun F F A U A U dom F A U
17 funforn Fun F F : dom F onto ran F
18 fof F : dom F onto ran F F : dom F ran F
19 17 18 sylbi Fun F F : dom F ran F
20 inss1 dom F A dom F
21 fssres F : dom F ran F dom F A dom F F dom F A : dom F A ran F
22 19 20 21 sylancl Fun F F dom F A : dom F A ran F
23 ffn F dom F A : dom F A ran F F dom F A Fn dom F A
24 1 22 23 3syl U Univ Fun F F A U A U F dom F A Fn dom F A
25 simpl3 U Univ Fun F F A U A U F A U
26 10 25 eqsstrrd U Univ Fun F F A U A U ran F dom F A U
27 df-f F dom F A : dom F A U F dom F A Fn dom F A ran F dom F A U
28 24 26 27 sylanbrc U Univ Fun F F A U A U F dom F A : dom F A U
29 grurn U Univ dom F A U F dom F A : dom F A U ran F dom F A U
30 11 16 28 29 syl3anc U Univ Fun F F A U A U ran F dom F A U
31 10 30 eqeltrd U Univ Fun F F A U A U F A U
32 31 ex U Univ Fun F F A U A U F A U