Metamath Proof Explorer


Theorem gruixp

Description: A Grothendieck universe contains indexed cartesian products of its elements. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion gruixp U Univ A U x A B U x A B U

Proof

Step Hyp Ref Expression
1 simp1 U Univ A U x A B U U Univ
2 gruiun U Univ A U x A B U x A B U
3 simp2 U Univ A U x A B U A U
4 grumap U Univ x A B U A U x A B A U
5 1 2 3 4 syl3anc U Univ A U x A B U x A B A U
6 ixpssmapg x A B U x A B x A B A
7 6 3ad2ant3 U Univ A U x A B U x A B x A B A
8 gruss U Univ x A B A U x A B x A B A x A B U
9 1 5 7 8 syl3anc U Univ A U x A B U x A B U