Metamath Proof Explorer


Theorem gruop

Description: A Grothendieck universe contains ordered pairs of its elements. (Contributed by Mario Carneiro, 10-Jun-2013)

Ref Expression
Assertion gruop U Univ A U B U A B U

Proof

Step Hyp Ref Expression
1 dfopg A U B U A B = A A B
2 1 3adant1 U Univ A U B U A B = A A B
3 simp1 U Univ A U B U U Univ
4 grusn U Univ A U A U
5 4 3adant3 U Univ A U B U A U
6 grupr U Univ A U B U A B U
7 grupr U Univ A U A B U A A B U
8 3 5 6 7 syl3anc U Univ A U B U A A B U
9 2 8 eqeltrd U Univ A U B U A B U