Metamath Proof Explorer


Theorem grupr

Description: A Grothendieck universe contains pairs derived from its elements. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion grupr U Univ A U B U A B U

Proof

Step Hyp Ref Expression
1 elgrug U Univ U Univ Tr U x U 𝒫 x U y U x y U y U x ran y U
2 1 ibi U Univ Tr U x U 𝒫 x U y U x y U y U x ran y U
3 2 simprd U Univ x U 𝒫 x U y U x y U y U x ran y U
4 preq2 y = B x y = x B
5 4 eleq1d y = B x y U x B U
6 5 rspccv y U x y U B U x B U
7 6 3ad2ant2 𝒫 x U y U x y U y U x ran y U B U x B U
8 7 com12 B U 𝒫 x U y U x y U y U x ran y U x B U
9 8 ralimdv B U x U 𝒫 x U y U x y U y U x ran y U x U x B U
10 3 9 syl5com U Univ B U x U x B U
11 preq1 x = A x B = A B
12 11 eleq1d x = A x B U A B U
13 12 rspccv x U x B U A U A B U
14 10 13 syl6 U Univ B U A U A B U
15 14 com23 U Univ A U B U A B U
16 15 3imp U Univ A U B U A B U