Metamath Proof Explorer


Theorem grupw

Description: A Grothendieck universe contains the powerset of each of its members. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion grupw U Univ A U 𝒫 A U

Proof

Step Hyp Ref Expression
1 elgrug U Univ U Univ Tr U y U 𝒫 y U x U y x U x U y ran x U
2 1 ibi U Univ Tr U y U 𝒫 y U x U y x U x U y ran x U
3 2 simprd U Univ y U 𝒫 y U x U y x U x U y ran x U
4 simp1 𝒫 y U x U y x U x U y ran x U 𝒫 y U
5 4 ralimi y U 𝒫 y U x U y x U x U y ran x U y U 𝒫 y U
6 pweq y = A 𝒫 y = 𝒫 A
7 6 eleq1d y = A 𝒫 y U 𝒫 A U
8 7 rspccv y U 𝒫 y U A U 𝒫 A U
9 3 5 8 3syl U Univ A U 𝒫 A U
10 9 imp U Univ A U 𝒫 A U