Step |
Hyp |
Ref |
Expression |
1 |
|
gruina.1 |
|
2 |
|
inss1 |
|
3 |
1 2
|
eqsstri |
|
4 |
|
sseq2 |
|
5 |
3 4
|
mpbii |
|
6 |
|
ss0 |
|
7 |
|
fveq2 |
|
8 |
|
r10 |
|
9 |
7 8
|
eqtrdi |
|
10 |
|
0ss |
|
11 |
9 10
|
eqsstrdi |
|
12 |
5 6 11
|
3syl |
|
13 |
12
|
a1i |
|
14 |
1
|
gruina |
|
15 |
|
inawina |
|
16 |
|
winaon |
|
17 |
|
winalim |
|
18 |
|
r1lim |
|
19 |
16 17 18
|
syl2anc |
|
20 |
14 15 19
|
3syl |
|
21 |
|
inss2 |
|
22 |
1 21
|
eqsstri |
|
23 |
22
|
sseli |
|
24 |
|
eleq1 |
|
25 |
|
fveq2 |
|
26 |
25 8
|
eqtrdi |
|
27 |
26
|
eleq1d |
|
28 |
24 27
|
imbi12d |
|
29 |
|
eleq1 |
|
30 |
|
fveq2 |
|
31 |
30
|
eleq1d |
|
32 |
29 31
|
imbi12d |
|
33 |
|
eleq1 |
|
34 |
|
fveq2 |
|
35 |
34
|
eleq1d |
|
36 |
33 35
|
imbi12d |
|
37 |
3
|
sseli |
|
38 |
37
|
a1i |
|
39 |
|
simpr |
|
40 |
|
elelsuc |
|
41 |
3
|
sseli |
|
42 |
41
|
ne0d |
|
43 |
14 15 16
|
3syl |
|
44 |
42 43
|
sylan2 |
|
45 |
|
eloni |
|
46 |
|
ordsucelsuc |
|
47 |
44 45 46
|
3syl |
|
48 |
40 47
|
syl5ibr |
|
49 |
39 48
|
mpd |
|
50 |
|
grupw |
|
51 |
50
|
ex |
|
52 |
51
|
adantr |
|
53 |
|
r1suc |
|
54 |
53
|
eleq1d |
|
55 |
54
|
biimprcd |
|
56 |
52 55
|
syl6 |
|
57 |
49 56
|
embantd |
|
58 |
57
|
ex |
|
59 |
58
|
com23 |
|
60 |
59
|
com4r |
|
61 |
|
simpr |
|
62 |
3
|
sseli |
|
63 |
62
|
ne0d |
|
64 |
63 43
|
sylan2 |
|
65 |
|
ontr1 |
|
66 |
|
pm2.27 |
|
67 |
65 66
|
syl6 |
|
68 |
67
|
expd |
|
69 |
68
|
com3r |
|
70 |
61 64 69
|
sylc |
|
71 |
70
|
imp |
|
72 |
71
|
ralimdva |
|
73 |
|
gruiun |
|
74 |
73
|
3expia |
|
75 |
62 74
|
sylan2 |
|
76 |
72 75
|
syld |
|
77 |
|
vex |
|
78 |
|
r1lim |
|
79 |
77 78
|
mpan |
|
80 |
79
|
eleq1d |
|
81 |
80
|
biimprd |
|
82 |
76 81
|
sylan9r |
|
83 |
82
|
exp32 |
|
84 |
83
|
com34 |
|
85 |
28 32 36 38 60 84
|
tfinds2 |
|
86 |
85
|
com3r |
|
87 |
23 86
|
mpd |
|
88 |
87
|
impcom |
|
89 |
|
gruelss |
|
90 |
88 89
|
syldan |
|
91 |
90
|
ralrimiva |
|
92 |
|
iunss |
|
93 |
91 92
|
sylibr |
|
94 |
93
|
adantr |
|
95 |
20 94
|
eqsstrd |
|
96 |
95
|
ex |
|
97 |
13 96
|
pm2.61dne |
|