Metamath Proof Explorer


Theorem grurn

Description: A Grothendieck universe contains the range of any function which takes values in the universe (see gruiun for a more intuitive version). (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion grurn U Univ A U F : A U ran F U

Proof

Step Hyp Ref Expression
1 simp1 U Univ A U F : A U U Univ
2 gruurn U Univ A U F : A U ran F U
3 grupw U Univ ran F U 𝒫 ran F U
4 1 2 3 syl2anc U Univ A U F : A U 𝒫 ran F U
5 pwuni ran F 𝒫 ran F
6 5 a1i U Univ A U F : A U ran F 𝒫 ran F
7 gruss U Univ 𝒫 ran F U ran F 𝒫 ran F ran F U
8 1 4 6 7 syl3anc U Univ A U F : A U ran F U