Description: Any subset of an element of a Grothendieck universe is also an element. (Contributed by Mario Carneiro, 9-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | gruss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw2g | ||
2 | 1 | adantl | |
3 | grupw | ||
4 | gruelss | ||
5 | 3 4 | syldan | |
6 | 5 | sseld | |
7 | 2 6 | sylbird | |
8 | 7 | 3impia |