Metamath Proof Explorer


Theorem gruss

Description: Any subset of an element of a Grothendieck universe is also an element. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion gruss U Univ A U B A B U

Proof

Step Hyp Ref Expression
1 elpw2g A U B 𝒫 A B A
2 1 adantl U Univ A U B 𝒫 A B A
3 grupw U Univ A U 𝒫 A U
4 gruelss U Univ 𝒫 A U 𝒫 A U
5 3 4 syldan U Univ A U 𝒫 A U
6 5 sseld U Univ A U B 𝒫 A B U
7 2 6 sylbird U Univ A U B A B U
8 7 3impia U Univ A U B A B U