Database
TG (TARSKI-GROTHENDIECK) SET THEORY
Inaccessibles
Grothendieck universes
grutr
Next ⟩
gruelss
Metamath Proof Explorer
Ascii
Unicode
Theorem
grutr
Description:
A Grothendieck universe is transitive.
(Contributed by
Mario Carneiro
, 2-Jan-2017)
Ref
Expression
Assertion
grutr
⊢
U
∈
Univ
→
Tr
⁡
U
Proof
Step
Hyp
Ref
Expression
1
elgrug
⊢
U
∈
Univ
→
U
∈
Univ
↔
Tr
⁡
U
∧
∀
x
∈
U
𝒫
x
∈
U
∧
∀
y
∈
U
x
y
∈
U
∧
∀
y
∈
U
x
⋃
ran
⁡
y
∈
U
2
1
ibi
⊢
U
∈
Univ
→
Tr
⁡
U
∧
∀
x
∈
U
𝒫
x
∈
U
∧
∀
y
∈
U
x
y
∈
U
∧
∀
y
∈
U
x
⋃
ran
⁡
y
∈
U
3
2
simpld
⊢
U
∈
Univ
→
Tr
⁡
U