Metamath Proof Explorer


Theorem grutsk1

Description: Grothendieck universes are the same as transitive Tarski classes, part one: a transitive Tarski class is a universe. (The hard work is in tskuni .) (Contributed by Mario Carneiro, 17-Jun-2013)

Ref Expression
Assertion grutsk1 T Tarski Tr T T Univ

Proof

Step Hyp Ref Expression
1 simpr T Tarski Tr T Tr T
2 tskpw T Tarski x T 𝒫 x T
3 2 adantlr T Tarski Tr T x T 𝒫 x T
4 tskpr T Tarski x T y T x y T
5 4 3expa T Tarski x T y T x y T
6 5 ralrimiva T Tarski x T y T x y T
7 6 adantlr T Tarski Tr T x T y T x y T
8 elmapg T Tarski x T y T x y : x T
9 8 adantlr T Tarski Tr T x T y T x y : x T
10 tskurn T Tarski Tr T x T y : x T ran y T
11 10 3expia T Tarski Tr T x T y : x T ran y T
12 9 11 sylbid T Tarski Tr T x T y T x ran y T
13 12 ralrimiv T Tarski Tr T x T y T x ran y T
14 3 7 13 3jca T Tarski Tr T x T 𝒫 x T y T x y T y T x ran y T
15 14 ralrimiva T Tarski Tr T x T 𝒫 x T y T x y T y T x ran y T
16 elgrug T Tarski T Univ Tr T x T 𝒫 x T y T x y T y T x ran y T
17 16 adantr T Tarski Tr T T Univ Tr T x T 𝒫 x T y T x y T y T x ran y T
18 1 15 17 mpbir2and T Tarski Tr T T Univ