Metamath Proof Explorer


Theorem gruun

Description: A Grothendieck universe contains binary unions of its elements. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion gruun U Univ A U B U A B U

Proof

Step Hyp Ref Expression
1 uniprg A U B U A B = A B
2 1 3adant1 U Univ A U B U A B = A B
3 uniiun A B = x A B x
4 2 3 eqtr3di U Univ A U B U A B = x A B x
5 simp1 U Univ A U B U U Univ
6 grupr U Univ A U B U A B U
7 vex x V
8 7 elpr x A B x = A x = B
9 eleq1a A U x = A x U
10 eleq1a B U x = B x U
11 9 10 jaao A U B U x = A x = B x U
12 8 11 syl5bi A U B U x A B x U
13 12 ralrimiv A U B U x A B x U
14 13 3adant1 U Univ A U B U x A B x U
15 gruiun U Univ A B U x A B x U x A B x U
16 5 6 14 15 syl3anc U Univ A U B U x A B x U
17 4 16 eqeltrd U Univ A U B U A B U