Metamath Proof Explorer


Theorem gruuni

Description: A Grothendieck universe contains unions of its elements. (Contributed by Mario Carneiro, 17-Jun-2013)

Ref Expression
Assertion gruuni U Univ A U A U

Proof

Step Hyp Ref Expression
1 uniiun A = x A x
2 gruelss U Univ A U A U
3 dfss3 A U x A x U
4 2 3 sylib U Univ A U x A x U
5 gruiun U Univ A U x A x U x A x U
6 4 5 mpd3an3 U Univ A U x A x U
7 1 6 eqeltrid U Univ A U A U