Metamath Proof Explorer


Theorem gruurn

Description: A Grothendieck universe contains the range of any function which takes values in the universe (see gruiun for a more intuitive version). (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion gruurn U Univ A U F : A U ran F U

Proof

Step Hyp Ref Expression
1 elmapg U Univ A U F U A F : A U
2 elgrug U Univ U Univ Tr U x U 𝒫 x U y U x y U y U x ran y U
3 2 ibi U Univ Tr U x U 𝒫 x U y U x y U y U x ran y U
4 3 simprd U Univ x U 𝒫 x U y U x y U y U x ran y U
5 rneq y = F ran y = ran F
6 5 unieqd y = F ran y = ran F
7 6 eleq1d y = F ran y U ran F U
8 7 rspccv y U x ran y U F U x ran F U
9 8 3ad2ant3 𝒫 x U y U x y U y U x ran y U F U x ran F U
10 9 ralimi x U 𝒫 x U y U x y U y U x ran y U x U F U x ran F U
11 oveq2 x = A U x = U A
12 11 eleq2d x = A F U x F U A
13 12 imbi1d x = A F U x ran F U F U A ran F U
14 13 rspccv x U F U x ran F U A U F U A ran F U
15 4 10 14 3syl U Univ A U F U A ran F U
16 15 imp U Univ A U F U A ran F U
17 1 16 sylbird U Univ A U F : A U ran F U
18 17 3impia U Univ A U F : A U ran F U