Metamath Proof Explorer


Theorem gruwun

Description: A nonempty Grothendieck universe is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion gruwun U Univ U U WUni

Proof

Step Hyp Ref Expression
1 grutr U Univ Tr U
2 1 adantr U Univ U Tr U
3 simpr U Univ U U
4 gruuni U Univ x U x U
5 4 adantlr U Univ U x U x U
6 grupw U Univ x U 𝒫 x U
7 6 adantlr U Univ U x U 𝒫 x U
8 grupr U Univ x U y U x y U
9 8 ad4ant134 U Univ U x U y U x y U
10 9 ralrimiva U Univ U x U y U x y U
11 5 7 10 3jca U Univ U x U x U 𝒫 x U y U x y U
12 11 ralrimiva U Univ U x U x U 𝒫 x U y U x y U
13 iswun U Univ U WUni Tr U U x U x U 𝒫 x U y U x y U
14 13 adantr U Univ U U WUni Tr U U x U x U 𝒫 x U y U x y U
15 2 3 12 14 mpbir3and U Univ U U WUni