Metamath Proof Explorer


Theorem gsmsymgreqlem1

Description: Lemma 1 for gsmsymgreq . (Contributed by AV, 26-Jan-2019)

Ref Expression
Hypotheses gsmsymgrfix.s S = SymGrp N
gsmsymgrfix.b B = Base S
gsmsymgreq.z Z = SymGrp M
gsmsymgreq.p P = Base Z
gsmsymgreq.i I = N M
Assertion gsmsymgreqlem1 N Fin M Fin J I X Word B C B Y Word P R P X = Y n I S X n = Z Y n C J = R J S X ++ ⟨“ C ”⟩ J = Z Y ++ ⟨“ R ”⟩ J

Proof

Step Hyp Ref Expression
1 gsmsymgrfix.s S = SymGrp N
2 gsmsymgrfix.b B = Base S
3 gsmsymgreq.z Z = SymGrp M
4 gsmsymgreq.p P = Base Z
5 gsmsymgreq.i I = N M
6 simpr X Word B C B C B
7 simpr Y Word P R P R P
8 6 7 anim12i X Word B C B Y Word P R P C B R P
9 8 3adant3 X Word B C B Y Word P R P X = Y C B R P
10 9 adantl N Fin M Fin J I X Word B C B Y Word P R P X = Y C B R P
11 10 adantr N Fin M Fin J I X Word B C B Y Word P R P X = Y n I S X n = Z Y n C J = R J C B R P
12 simpll3 N Fin M Fin J I X Word B C B Y Word P R P X = Y n I S X n = Z Y n C J = R J J I
13 simpr n I S X n = Z Y n C J = R J C J = R J
14 13 adantl N Fin M Fin J I X Word B C B Y Word P R P X = Y n I S X n = Z Y n C J = R J C J = R J
15 simprl N Fin M Fin J I X Word B C B Y Word P R P X = Y n I S X n = Z Y n C J = R J n I S X n = Z Y n
16 12 14 15 3jca N Fin M Fin J I X Word B C B Y Word P R P X = Y n I S X n = Z Y n C J = R J J I C J = R J n I S X n = Z Y n
17 1 2 3 4 5 fvcosymgeq C B R P J I C J = R J n I S X n = Z Y n S X C J = Z Y R J
18 11 16 17 sylc N Fin M Fin J I X Word B C B Y Word P R P X = Y n I S X n = Z Y n C J = R J S X C J = Z Y R J
19 simpl1 N Fin M Fin J I X Word B C B Y Word P R P X = Y N Fin
20 simpr1l N Fin M Fin J I X Word B C B Y Word P R P X = Y X Word B
21 simpr1r N Fin M Fin J I X Word B C B Y Word P R P X = Y C B
22 19 20 21 3jca N Fin M Fin J I X Word B C B Y Word P R P X = Y N Fin X Word B C B
23 22 adantr N Fin M Fin J I X Word B C B Y Word P R P X = Y n I S X n = Z Y n C J = R J N Fin X Word B C B
24 1 2 gsumccatsymgsn N Fin X Word B C B S X ++ ⟨“ C ”⟩ = S X C
25 23 24 syl N Fin M Fin J I X Word B C B Y Word P R P X = Y n I S X n = Z Y n C J = R J S X ++ ⟨“ C ”⟩ = S X C
26 25 fveq1d N Fin M Fin J I X Word B C B Y Word P R P X = Y n I S X n = Z Y n C J = R J S X ++ ⟨“ C ”⟩ J = S X C J
27 simpl2 N Fin M Fin J I X Word B C B Y Word P R P X = Y M Fin
28 simpr2l N Fin M Fin J I X Word B C B Y Word P R P X = Y Y Word P
29 simpr2r N Fin M Fin J I X Word B C B Y Word P R P X = Y R P
30 27 28 29 3jca N Fin M Fin J I X Word B C B Y Word P R P X = Y M Fin Y Word P R P
31 30 adantr N Fin M Fin J I X Word B C B Y Word P R P X = Y n I S X n = Z Y n C J = R J M Fin Y Word P R P
32 3 4 gsumccatsymgsn M Fin Y Word P R P Z Y ++ ⟨“ R ”⟩ = Z Y R
33 31 32 syl N Fin M Fin J I X Word B C B Y Word P R P X = Y n I S X n = Z Y n C J = R J Z Y ++ ⟨“ R ”⟩ = Z Y R
34 33 fveq1d N Fin M Fin J I X Word B C B Y Word P R P X = Y n I S X n = Z Y n C J = R J Z Y ++ ⟨“ R ”⟩ J = Z Y R J
35 18 26 34 3eqtr4d N Fin M Fin J I X Word B C B Y Word P R P X = Y n I S X n = Z Y n C J = R J S X ++ ⟨“ C ”⟩ J = Z Y ++ ⟨“ R ”⟩ J
36 35 ex N Fin M Fin J I X Word B C B Y Word P R P X = Y n I S X n = Z Y n C J = R J S X ++ ⟨“ C ”⟩ J = Z Y ++ ⟨“ R ”⟩ J