Step |
Hyp |
Ref |
Expression |
1 |
|
gsmsymgrfix.s |
|
2 |
|
gsmsymgrfix.b |
|
3 |
|
gsmsymgreq.z |
|
4 |
|
gsmsymgreq.p |
|
5 |
|
gsmsymgreq.i |
|
6 |
|
simpr |
|
7 |
|
simpr |
|
8 |
6 7
|
anim12i |
|
9 |
8
|
3adant3 |
|
10 |
9
|
adantl |
|
11 |
10
|
adantr |
|
12 |
|
simpll3 |
|
13 |
|
simpr |
|
14 |
13
|
adantl |
|
15 |
|
simprl |
|
16 |
12 14 15
|
3jca |
|
17 |
1 2 3 4 5
|
fvcosymgeq |
|
18 |
11 16 17
|
sylc |
|
19 |
|
simpl1 |
|
20 |
|
simpr1l |
|
21 |
|
simpr1r |
|
22 |
19 20 21
|
3jca |
|
23 |
22
|
adantr |
|
24 |
1 2
|
gsumccatsymgsn |
|
25 |
23 24
|
syl |
|
26 |
25
|
fveq1d |
|
27 |
|
simpl2 |
|
28 |
|
simpr2l |
|
29 |
|
simpr2r |
|
30 |
27 28 29
|
3jca |
|
31 |
30
|
adantr |
|
32 |
3 4
|
gsumccatsymgsn |
|
33 |
31 32
|
syl |
|
34 |
33
|
fveq1d |
|
35 |
18 26 34
|
3eqtr4d |
|
36 |
35
|
ex |
|