Step |
Hyp |
Ref |
Expression |
1 |
|
gsmsymgrfix.s |
|
2 |
|
gsmsymgrfix.b |
|
3 |
|
gsmsymgreq.z |
|
4 |
|
gsmsymgreq.p |
|
5 |
|
gsmsymgreq.i |
|
6 |
|
ccatws1len |
|
7 |
6
|
oveq2d |
|
8 |
|
lencl |
|
9 |
|
elnn0uz |
|
10 |
8 9
|
sylib |
|
11 |
|
fzosplitsn |
|
12 |
10 11
|
syl |
|
13 |
7 12
|
eqtrd |
|
14 |
13
|
adantr |
|
15 |
14
|
3ad2ant1 |
|
16 |
15
|
raleqdv |
|
17 |
8
|
adantr |
|
18 |
17
|
3ad2ant1 |
|
19 |
|
fveq2 |
|
20 |
19
|
fveq1d |
|
21 |
|
fveq2 |
|
22 |
21
|
fveq1d |
|
23 |
20 22
|
eqeq12d |
|
24 |
23
|
ralbidv |
|
25 |
24
|
ralunsn |
|
26 |
18 25
|
syl |
|
27 |
|
simp1l |
|
28 |
|
ccats1val1 |
|
29 |
27 28
|
sylan |
|
30 |
29
|
fveq1d |
|
31 |
|
simp2l |
|
32 |
|
oveq2 |
|
33 |
32
|
eleq2d |
|
34 |
33
|
biimpd |
|
35 |
34
|
3ad2ant3 |
|
36 |
35
|
imp |
|
37 |
|
ccats1val1 |
|
38 |
31 36 37
|
syl2an2r |
|
39 |
38
|
fveq1d |
|
40 |
30 39
|
eqeq12d |
|
41 |
40
|
ralbidv |
|
42 |
41
|
ralbidva |
|
43 |
|
eqidd |
|
44 |
|
ccats1val2 |
|
45 |
44
|
fveq1d |
|
46 |
43 45
|
mpd3an3 |
|
47 |
46
|
3ad2ant1 |
|
48 |
|
ccats1val2 |
|
49 |
48
|
fveq1d |
|
50 |
49
|
3expa |
|
51 |
50
|
3adant1 |
|
52 |
47 51
|
eqeq12d |
|
53 |
52
|
ralbidv |
|
54 |
42 53
|
anbi12d |
|
55 |
16 26 54
|
3bitrd |
|
56 |
55
|
ad2antlr |
|
57 |
|
pm3.35 |
|
58 |
|
fveq2 |
|
59 |
|
fveq2 |
|
60 |
58 59
|
eqeq12d |
|
61 |
60
|
cbvralvw |
|
62 |
|
simp-4l |
|
63 |
|
simp-4r |
|
64 |
|
simpr |
|
65 |
62 63 64
|
3jca |
|
66 |
65
|
adantr |
|
67 |
|
simp-4r |
|
68 |
|
simplr |
|
69 |
68
|
anim1i |
|
70 |
1 2 3 4 5
|
gsmsymgreqlem1 |
|
71 |
70
|
imp |
|
72 |
66 67 69 71
|
syl21anc |
|
73 |
72
|
ex |
|
74 |
73
|
ralimdva |
|
75 |
74
|
expcom |
|
76 |
61 75
|
sylbi |
|
77 |
76
|
com23 |
|
78 |
57 77
|
syl |
|
79 |
78
|
impancom |
|
80 |
79
|
com13 |
|
81 |
80
|
imp |
|
82 |
56 81
|
sylbid |
|
83 |
82
|
ex |
|