Metamath Proof Explorer


Theorem gsmsymgrfix

Description: The composition of permutations fixing one element also fixes this element. (Contributed by AV, 20-Jan-2019)

Ref Expression
Hypotheses gsmsymgrfix.s S = SymGrp N
gsmsymgrfix.b B = Base S
Assertion gsmsymgrfix N Fin K N W Word B i 0 ..^ W W i K = K S W K = K

Proof

Step Hyp Ref Expression
1 gsmsymgrfix.s S = SymGrp N
2 gsmsymgrfix.b B = Base S
3 hasheq0 w V w = 0 w =
4 3 elv w = 0 w =
5 4 biimpri w = w = 0
6 5 oveq2d w = 0 ..^ w = 0 ..^ 0
7 fzo0 0 ..^ 0 =
8 6 7 eqtrdi w = 0 ..^ w =
9 fveq1 w = w i = i
10 9 fveq1d w = w i K = i K
11 10 eqeq1d w = w i K = K i K = K
12 8 11 raleqbidv w = i 0 ..^ w w i K = K i i K = K
13 oveq2 w = S w = S
14 13 fveq1d w = S w K = S K
15 14 eqeq1d w = S w K = K S K = K
16 12 15 imbi12d w = i 0 ..^ w w i K = K S w K = K i i K = K S K = K
17 16 imbi2d w = N Fin K N i 0 ..^ w w i K = K S w K = K N Fin K N i i K = K S K = K
18 fveq2 w = y w = y
19 18 oveq2d w = y 0 ..^ w = 0 ..^ y
20 fveq1 w = y w i = y i
21 20 fveq1d w = y w i K = y i K
22 21 eqeq1d w = y w i K = K y i K = K
23 19 22 raleqbidv w = y i 0 ..^ w w i K = K i 0 ..^ y y i K = K
24 oveq2 w = y S w = S y
25 24 fveq1d w = y S w K = S y K
26 25 eqeq1d w = y S w K = K S y K = K
27 23 26 imbi12d w = y i 0 ..^ w w i K = K S w K = K i 0 ..^ y y i K = K S y K = K
28 27 imbi2d w = y N Fin K N i 0 ..^ w w i K = K S w K = K N Fin K N i 0 ..^ y y i K = K S y K = K
29 fveq2 w = y ++ ⟨“ z ”⟩ w = y ++ ⟨“ z ”⟩
30 29 oveq2d w = y ++ ⟨“ z ”⟩ 0 ..^ w = 0 ..^ y ++ ⟨“ z ”⟩
31 fveq1 w = y ++ ⟨“ z ”⟩ w i = y ++ ⟨“ z ”⟩ i
32 31 fveq1d w = y ++ ⟨“ z ”⟩ w i K = y ++ ⟨“ z ”⟩ i K
33 32 eqeq1d w = y ++ ⟨“ z ”⟩ w i K = K y ++ ⟨“ z ”⟩ i K = K
34 30 33 raleqbidv w = y ++ ⟨“ z ”⟩ i 0 ..^ w w i K = K i 0 ..^ y ++ ⟨“ z ”⟩ y ++ ⟨“ z ”⟩ i K = K
35 oveq2 w = y ++ ⟨“ z ”⟩ S w = S y ++ ⟨“ z ”⟩
36 35 fveq1d w = y ++ ⟨“ z ”⟩ S w K = S y ++ ⟨“ z ”⟩ K
37 36 eqeq1d w = y ++ ⟨“ z ”⟩ S w K = K S y ++ ⟨“ z ”⟩ K = K
38 34 37 imbi12d w = y ++ ⟨“ z ”⟩ i 0 ..^ w w i K = K S w K = K i 0 ..^ y ++ ⟨“ z ”⟩ y ++ ⟨“ z ”⟩ i K = K S y ++ ⟨“ z ”⟩ K = K
39 38 imbi2d w = y ++ ⟨“ z ”⟩ N Fin K N i 0 ..^ w w i K = K S w K = K N Fin K N i 0 ..^ y ++ ⟨“ z ”⟩ y ++ ⟨“ z ”⟩ i K = K S y ++ ⟨“ z ”⟩ K = K
40 fveq2 w = W w = W
41 40 oveq2d w = W 0 ..^ w = 0 ..^ W
42 fveq1 w = W w i = W i
43 42 fveq1d w = W w i K = W i K
44 43 eqeq1d w = W w i K = K W i K = K
45 41 44 raleqbidv w = W i 0 ..^ w w i K = K i 0 ..^ W W i K = K
46 oveq2 w = W S w = S W
47 46 fveq1d w = W S w K = S W K
48 47 eqeq1d w = W S w K = K S W K = K
49 45 48 imbi12d w = W i 0 ..^ w w i K = K S w K = K i 0 ..^ W W i K = K S W K = K
50 49 imbi2d w = W N Fin K N i 0 ..^ w w i K = K S w K = K N Fin K N i 0 ..^ W W i K = K S W K = K
51 eqid 0 S = 0 S
52 51 gsum0 S = 0 S
53 1 symgid N Fin I N = 0 S
54 53 adantr N Fin K N I N = 0 S
55 52 54 eqtr4id N Fin K N S = I N
56 55 fveq1d N Fin K N S K = I N K
57 fvresi K N I N K = K
58 57 adantl N Fin K N I N K = K
59 56 58 eqtrd N Fin K N S K = K
60 59 a1d N Fin K N i i K = K S K = K
61 ccatws1len y Word B y ++ ⟨“ z ”⟩ = y + 1
62 61 oveq2d y Word B 0 ..^ y ++ ⟨“ z ”⟩ = 0 ..^ y + 1
63 62 raleqdv y Word B i 0 ..^ y ++ ⟨“ z ”⟩ y ++ ⟨“ z ”⟩ i K = K i 0 ..^ y + 1 y ++ ⟨“ z ”⟩ i K = K
64 63 adantr y Word B z B i 0 ..^ y ++ ⟨“ z ”⟩ y ++ ⟨“ z ”⟩ i K = K i 0 ..^ y + 1 y ++ ⟨“ z ”⟩ i K = K
65 64 adantr y Word B z B N Fin K N i 0 ..^ y y i K = K S y K = K i 0 ..^ y ++ ⟨“ z ”⟩ y ++ ⟨“ z ”⟩ i K = K i 0 ..^ y + 1 y ++ ⟨“ z ”⟩ i K = K
66 1 2 gsmsymgrfixlem1 y Word B z B N Fin K N i 0 ..^ y y i K = K S y K = K i 0 ..^ y + 1 y ++ ⟨“ z ”⟩ i K = K S y ++ ⟨“ z ”⟩ K = K
67 66 3expb y Word B z B N Fin K N i 0 ..^ y y i K = K S y K = K i 0 ..^ y + 1 y ++ ⟨“ z ”⟩ i K = K S y ++ ⟨“ z ”⟩ K = K
68 65 67 sylbid y Word B z B N Fin K N i 0 ..^ y y i K = K S y K = K i 0 ..^ y ++ ⟨“ z ”⟩ y ++ ⟨“ z ”⟩ i K = K S y ++ ⟨“ z ”⟩ K = K
69 68 exp32 y Word B z B N Fin K N i 0 ..^ y y i K = K S y K = K i 0 ..^ y ++ ⟨“ z ”⟩ y ++ ⟨“ z ”⟩ i K = K S y ++ ⟨“ z ”⟩ K = K
70 69 a2d y Word B z B N Fin K N i 0 ..^ y y i K = K S y K = K N Fin K N i 0 ..^ y ++ ⟨“ z ”⟩ y ++ ⟨“ z ”⟩ i K = K S y ++ ⟨“ z ”⟩ K = K
71 17 28 39 50 60 70 wrdind W Word B N Fin K N i 0 ..^ W W i K = K S W K = K
72 71 com12 N Fin K N W Word B i 0 ..^ W W i K = K S W K = K
73 72 3impia N Fin K N W Word B i 0 ..^ W W i K = K S W K = K