Step |
Hyp |
Ref |
Expression |
1 |
|
gsmsymgrfix.s |
|
2 |
|
gsmsymgrfix.b |
|
3 |
|
hasheq0 |
|
4 |
3
|
elv |
|
5 |
4
|
biimpri |
|
6 |
5
|
oveq2d |
|
7 |
|
fzo0 |
|
8 |
6 7
|
eqtrdi |
|
9 |
|
fveq1 |
|
10 |
9
|
fveq1d |
|
11 |
10
|
eqeq1d |
|
12 |
8 11
|
raleqbidv |
|
13 |
|
oveq2 |
|
14 |
13
|
fveq1d |
|
15 |
14
|
eqeq1d |
|
16 |
12 15
|
imbi12d |
|
17 |
16
|
imbi2d |
|
18 |
|
fveq2 |
|
19 |
18
|
oveq2d |
|
20 |
|
fveq1 |
|
21 |
20
|
fveq1d |
|
22 |
21
|
eqeq1d |
|
23 |
19 22
|
raleqbidv |
|
24 |
|
oveq2 |
|
25 |
24
|
fveq1d |
|
26 |
25
|
eqeq1d |
|
27 |
23 26
|
imbi12d |
|
28 |
27
|
imbi2d |
|
29 |
|
fveq2 |
|
30 |
29
|
oveq2d |
|
31 |
|
fveq1 |
|
32 |
31
|
fveq1d |
|
33 |
32
|
eqeq1d |
|
34 |
30 33
|
raleqbidv |
|
35 |
|
oveq2 |
|
36 |
35
|
fveq1d |
|
37 |
36
|
eqeq1d |
|
38 |
34 37
|
imbi12d |
|
39 |
38
|
imbi2d |
|
40 |
|
fveq2 |
|
41 |
40
|
oveq2d |
|
42 |
|
fveq1 |
|
43 |
42
|
fveq1d |
|
44 |
43
|
eqeq1d |
|
45 |
41 44
|
raleqbidv |
|
46 |
|
oveq2 |
|
47 |
46
|
fveq1d |
|
48 |
47
|
eqeq1d |
|
49 |
45 48
|
imbi12d |
|
50 |
49
|
imbi2d |
|
51 |
|
eqid |
|
52 |
51
|
gsum0 |
|
53 |
1
|
symgid |
|
54 |
53
|
adantr |
|
55 |
52 54
|
eqtr4id |
|
56 |
55
|
fveq1d |
|
57 |
|
fvresi |
|
58 |
57
|
adantl |
|
59 |
56 58
|
eqtrd |
|
60 |
59
|
a1d |
|
61 |
|
ccatws1len |
|
62 |
61
|
oveq2d |
|
63 |
62
|
raleqdv |
|
64 |
63
|
adantr |
|
65 |
64
|
adantr |
|
66 |
1 2
|
gsmsymgrfixlem1 |
|
67 |
66
|
3expb |
|
68 |
65 67
|
sylbid |
|
69 |
68
|
exp32 |
|
70 |
69
|
a2d |
|
71 |
17 28 39 50 60 70
|
wrdind |
|
72 |
71
|
com12 |
|
73 |
72
|
3impia |
|