| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsmsymgrfix.s |
|
| 2 |
|
gsmsymgrfix.b |
|
| 3 |
|
hasheq0 |
|
| 4 |
3
|
elv |
|
| 5 |
4
|
biimpri |
|
| 6 |
5
|
oveq2d |
|
| 7 |
|
fzo0 |
|
| 8 |
6 7
|
eqtrdi |
|
| 9 |
|
fveq1 |
|
| 10 |
9
|
fveq1d |
|
| 11 |
10
|
eqeq1d |
|
| 12 |
8 11
|
raleqbidv |
|
| 13 |
|
oveq2 |
|
| 14 |
13
|
fveq1d |
|
| 15 |
14
|
eqeq1d |
|
| 16 |
12 15
|
imbi12d |
|
| 17 |
16
|
imbi2d |
|
| 18 |
|
fveq2 |
|
| 19 |
18
|
oveq2d |
|
| 20 |
|
fveq1 |
|
| 21 |
20
|
fveq1d |
|
| 22 |
21
|
eqeq1d |
|
| 23 |
19 22
|
raleqbidv |
|
| 24 |
|
oveq2 |
|
| 25 |
24
|
fveq1d |
|
| 26 |
25
|
eqeq1d |
|
| 27 |
23 26
|
imbi12d |
|
| 28 |
27
|
imbi2d |
|
| 29 |
|
fveq2 |
|
| 30 |
29
|
oveq2d |
|
| 31 |
|
fveq1 |
|
| 32 |
31
|
fveq1d |
|
| 33 |
32
|
eqeq1d |
|
| 34 |
30 33
|
raleqbidv |
|
| 35 |
|
oveq2 |
|
| 36 |
35
|
fveq1d |
|
| 37 |
36
|
eqeq1d |
|
| 38 |
34 37
|
imbi12d |
|
| 39 |
38
|
imbi2d |
|
| 40 |
|
fveq2 |
|
| 41 |
40
|
oveq2d |
|
| 42 |
|
fveq1 |
|
| 43 |
42
|
fveq1d |
|
| 44 |
43
|
eqeq1d |
|
| 45 |
41 44
|
raleqbidv |
|
| 46 |
|
oveq2 |
|
| 47 |
46
|
fveq1d |
|
| 48 |
47
|
eqeq1d |
|
| 49 |
45 48
|
imbi12d |
|
| 50 |
49
|
imbi2d |
|
| 51 |
|
eqid |
|
| 52 |
51
|
gsum0 |
|
| 53 |
1
|
symgid |
|
| 54 |
53
|
adantr |
|
| 55 |
52 54
|
eqtr4id |
|
| 56 |
55
|
fveq1d |
|
| 57 |
|
fvresi |
|
| 58 |
57
|
adantl |
|
| 59 |
56 58
|
eqtrd |
|
| 60 |
59
|
a1d |
|
| 61 |
|
ccatws1len |
|
| 62 |
61
|
oveq2d |
|
| 63 |
62
|
raleqdv |
|
| 64 |
63
|
adantr |
|
| 65 |
64
|
adantr |
|
| 66 |
1 2
|
gsmsymgrfixlem1 |
|
| 67 |
66
|
3expb |
|
| 68 |
65 67
|
sylbid |
|
| 69 |
68
|
exp32 |
|
| 70 |
69
|
a2d |
|
| 71 |
17 28 39 50 60 70
|
wrdind |
|
| 72 |
71
|
com12 |
|
| 73 |
72
|
3impia |
|