Step |
Hyp |
Ref |
Expression |
1 |
|
gsmsymgrfix.s |
|
2 |
|
gsmsymgrfix.b |
|
3 |
|
lencl |
|
4 |
|
elnn0uz |
|
5 |
3 4
|
sylib |
|
6 |
5
|
adantr |
|
7 |
6
|
3ad2ant1 |
|
8 |
|
fzosplitsn |
|
9 |
7 8
|
syl |
|
10 |
9
|
raleqdv |
|
11 |
3
|
adantr |
|
12 |
11
|
3ad2ant1 |
|
13 |
|
fveq2 |
|
14 |
13
|
fveq1d |
|
15 |
14
|
eqeq1d |
|
16 |
15
|
ralunsn |
|
17 |
12 16
|
syl |
|
18 |
10 17
|
bitrd |
|
19 |
|
eqidd |
|
20 |
|
ccats1val2 |
|
21 |
20
|
fveq1d |
|
22 |
21
|
eqeq1d |
|
23 |
19 22
|
mpd3an3 |
|
24 |
23
|
3ad2ant1 |
|
25 |
|
simprl |
|
26 |
|
simpll |
|
27 |
|
simplr |
|
28 |
1 2
|
gsumccatsymgsn |
|
29 |
28
|
fveq1d |
|
30 |
25 26 27 29
|
syl3anc |
|
31 |
30
|
3adant3 |
|
32 |
31
|
adantr |
|
33 |
1 2
|
symgbasf |
|
34 |
33
|
ffnd |
|
35 |
34
|
adantl |
|
36 |
|
simpr |
|
37 |
|
fvco2 |
|
38 |
35 36 37
|
syl2an |
|
39 |
38
|
3adant3 |
|
40 |
39
|
adantr |
|
41 |
|
fveq2 |
|
42 |
41
|
ad2antrl |
|
43 |
|
ccats1val1 |
|
44 |
43
|
ad4ant14 |
|
45 |
44
|
fveq1d |
|
46 |
45
|
eqeq1d |
|
47 |
46
|
ralbidva |
|
48 |
47
|
biimpd |
|
49 |
48
|
adantld |
|
50 |
49
|
3adant3 |
|
51 |
|
simp3 |
|
52 |
50 51
|
syld |
|
53 |
52
|
imp |
|
54 |
42 53
|
eqtrd |
|
55 |
32 40 54
|
3eqtrd |
|
56 |
55
|
exp32 |
|
57 |
24 56
|
sylbid |
|
58 |
57
|
impcomd |
|
59 |
18 58
|
sylbid |
|