Metamath Proof Explorer


Theorem gsum0

Description: Value of the empty group sum. (Contributed by Mario Carneiro, 7-Dec-2014)

Ref Expression
Hypothesis gsum0.z 0 ˙ = 0 G
Assertion gsum0 G = 0 ˙

Proof

Step Hyp Ref Expression
1 gsum0.z 0 ˙ = 0 G
2 eqid Base G = Base G
3 eqid + G = + G
4 eqid x Base G | y Base G x + G y = y y + G x = y = x Base G | y Base G x + G y = y y + G x = y
5 id G V G V
6 0ex V
7 6 a1i G V V
8 f0 : x Base G | y Base G x + G y = y y + G x = y
9 8 a1i G V : x Base G | y Base G x + G y = y y + G x = y
10 2 1 3 4 5 7 9 gsumval1 G V G = 0 ˙
11 df-gsum Σ𝑔 = w V , f V x Base w | y Base w x + w y = y y + w x = y / o if ran f o 0 w if dom f ran ι x | m n m dom f = m n x = seq m + w f n ι x | g [˙ f -1 V o / y]˙ g : 1 y 1-1 onto y x = seq 1 + w f g y
12 11 reldmmpo Rel dom Σ𝑔
13 12 ovprc1 ¬ G V G =
14 fvprc ¬ G V 0 G =
15 1 14 eqtrid ¬ G V 0 ˙ =
16 13 15 eqtr4d ¬ G V G = 0 ˙
17 10 16 pm2.61i G = 0 ˙