Database
BASIC ALGEBRAIC STRUCTURES
Monoids
Iterated sums in a magma
gsum0
Next ⟩
gsumval2a
Metamath Proof Explorer
Ascii
Unicode
Theorem
gsum0
Description:
Value of the empty group sum.
(Contributed by
Mario Carneiro
, 7-Dec-2014)
Ref
Expression
Hypothesis
gsum0.z
⊢
0
˙
=
0
G
Assertion
gsum0
⊢
∑
G
∅
=
0
˙
Proof
Step
Hyp
Ref
Expression
1
gsum0.z
⊢
0
˙
=
0
G
2
eqid
⊢
Base
G
=
Base
G
3
eqid
⊢
+
G
=
+
G
4
eqid
⊢
x
∈
Base
G
|
∀
y
∈
Base
G
x
+
G
y
=
y
∧
y
+
G
x
=
y
=
x
∈
Base
G
|
∀
y
∈
Base
G
x
+
G
y
=
y
∧
y
+
G
x
=
y
5
id
⊢
G
∈
V
→
G
∈
V
6
0ex
⊢
∅
∈
V
7
6
a1i
⊢
G
∈
V
→
∅
∈
V
8
f0
⊢
∅
:
∅
⟶
x
∈
Base
G
|
∀
y
∈
Base
G
x
+
G
y
=
y
∧
y
+
G
x
=
y
9
8
a1i
⊢
G
∈
V
→
∅
:
∅
⟶
x
∈
Base
G
|
∀
y
∈
Base
G
x
+
G
y
=
y
∧
y
+
G
x
=
y
10
2
1
3
4
5
7
9
gsumval1
⊢
G
∈
V
→
∑
G
∅
=
0
˙
11
df-gsum
⊢
Σ
𝑔
=
w
∈
V
,
f
∈
V
⟼
⦋
x
∈
Base
w
|
∀
y
∈
Base
w
x
+
w
y
=
y
∧
y
+
w
x
=
y
/
o
⦌
if
ran
⁡
f
⊆
o
0
w
if
dom
⁡
f
∈
ran
⁡
…
ι
x
|
∃
m
∃
n
∈
ℤ
≥
m
dom
⁡
f
=
m
…
n
∧
x
=
seq
m
+
w
f
⁡
n
ι
x
|
∃
g
[
˙
f
-1
V
∖
o
/
y
]
˙
g
:
1
…
y
⟶
1-1 onto
y
∧
x
=
seq
1
+
w
f
∘
g
⁡
y
12
11
reldmmpo
⊢
Rel
⁡
dom
⁡
Σ
𝑔
13
12
ovprc1
⊢
¬
G
∈
V
→
∑
G
∅
=
∅
14
fvprc
⊢
¬
G
∈
V
→
0
G
=
∅
15
1
14
eqtrid
⊢
¬
G
∈
V
→
0
˙
=
∅
16
13
15
eqtr4d
⊢
¬
G
∈
V
→
∑
G
∅
=
0
˙
17
10
16
pm2.61i
⊢
∑
G
∅
=
0
˙