Step |
Hyp |
Ref |
Expression |
1 |
|
gsum2d2.b |
|
2 |
|
gsum2d2.z |
|
3 |
|
gsum2d2.g |
|
4 |
|
gsum2d2.a |
|
5 |
|
gsum2d2.r |
|
6 |
|
gsum2d2.f |
|
7 |
|
gsum2d2.u |
|
8 |
|
gsum2d2.n |
|
9 |
|
snex |
|
10 |
|
xpexg |
|
11 |
9 5 10
|
sylancr |
|
12 |
11
|
ralrimiva |
|
13 |
|
iunexg |
|
14 |
4 12 13
|
syl2anc |
|
15 |
|
relxp |
|
16 |
15
|
rgenw |
|
17 |
|
reliun |
|
18 |
16 17
|
mpbir |
|
19 |
18
|
a1i |
|
20 |
|
vex |
|
21 |
20
|
eldm2 |
|
22 |
|
eliunxp |
|
23 |
|
vex |
|
24 |
20 23
|
opth1 |
|
25 |
24
|
ad2antrl |
|
26 |
|
simprrl |
|
27 |
25 26
|
eqeltrd |
|
28 |
27
|
ex |
|
29 |
28
|
exlimdvv |
|
30 |
22 29
|
syl5bi |
|
31 |
30
|
exlimdv |
|
32 |
21 31
|
syl5bi |
|
33 |
32
|
ssrdv |
|
34 |
6
|
ralrimivva |
|
35 |
|
eqid |
|
36 |
35
|
fmpox |
|
37 |
34 36
|
sylib |
|
38 |
1 2 3 4 5 6 7 8
|
gsum2d2lem |
|
39 |
1 2 3 14 19 4 33 37 38
|
gsum2d |
|
40 |
|
nfcv |
|
41 |
|
nfcv |
|
42 |
|
nfiu1 |
|
43 |
|
nfcv |
|
44 |
42 43
|
nfima |
|
45 |
|
nfcv |
|
46 |
|
nfmpo1 |
|
47 |
|
nfcv |
|
48 |
45 46 47
|
nfov |
|
49 |
44 48
|
nfmpt |
|
50 |
40 41 49
|
nfov |
|
51 |
|
nfcv |
|
52 |
|
sneq |
|
53 |
52
|
imaeq2d |
|
54 |
|
oveq1 |
|
55 |
53 54
|
mpteq12dv |
|
56 |
55
|
oveq2d |
|
57 |
50 51 56
|
cbvmpt |
|
58 |
|
vex |
|
59 |
|
vex |
|
60 |
58 59
|
elimasn |
|
61 |
|
opeliunxp |
|
62 |
60 61
|
bitri |
|
63 |
62
|
baib |
|
64 |
63
|
eqrdv |
|
65 |
64
|
mpteq1d |
|
66 |
|
nfcv |
|
67 |
|
nfmpo2 |
|
68 |
|
nfcv |
|
69 |
66 67 68
|
nfov |
|
70 |
|
nfcv |
|
71 |
|
oveq2 |
|
72 |
69 70 71
|
cbvmpt |
|
73 |
65 72
|
eqtrdi |
|
74 |
73
|
adantl |
|
75 |
|
simprl |
|
76 |
|
simprr |
|
77 |
35
|
ovmpt4g |
|
78 |
75 76 6 77
|
syl3anc |
|
79 |
78
|
anassrs |
|
80 |
79
|
mpteq2dva |
|
81 |
74 80
|
eqtrd |
|
82 |
81
|
oveq2d |
|
83 |
82
|
mpteq2dva |
|
84 |
57 83
|
eqtrid |
|
85 |
84
|
oveq2d |
|
86 |
39 85
|
eqtrd |
|