Metamath Proof Explorer


Theorem gsum2d2

Description: Write a group sum over a two-dimensional region as a double sum. Note that C ( j ) is a function of j . (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Hypotheses gsum2d2.b B = Base G
gsum2d2.z 0 ˙ = 0 G
gsum2d2.g φ G CMnd
gsum2d2.a φ A V
gsum2d2.r φ j A C W
gsum2d2.f φ j A k C X B
gsum2d2.u φ U Fin
gsum2d2.n φ j A k C ¬ j U k X = 0 ˙
Assertion gsum2d2 φ G j A , k C X = G j A G k C X

Proof

Step Hyp Ref Expression
1 gsum2d2.b B = Base G
2 gsum2d2.z 0 ˙ = 0 G
3 gsum2d2.g φ G CMnd
4 gsum2d2.a φ A V
5 gsum2d2.r φ j A C W
6 gsum2d2.f φ j A k C X B
7 gsum2d2.u φ U Fin
8 gsum2d2.n φ j A k C ¬ j U k X = 0 ˙
9 snex j V
10 xpexg j V C W j × C V
11 9 5 10 sylancr φ j A j × C V
12 11 ralrimiva φ j A j × C V
13 iunexg A V j A j × C V j A j × C V
14 4 12 13 syl2anc φ j A j × C V
15 relxp Rel j × C
16 15 rgenw j A Rel j × C
17 reliun Rel j A j × C j A Rel j × C
18 16 17 mpbir Rel j A j × C
19 18 a1i φ Rel j A j × C
20 vex x V
21 20 eldm2 x dom j A j × C y x y j A j × C
22 eliunxp x y j A j × C j k x y = j k j A k C
23 vex y V
24 20 23 opth1 x y = j k x = j
25 24 ad2antrl φ x y = j k j A k C x = j
26 simprrl φ x y = j k j A k C j A
27 25 26 eqeltrd φ x y = j k j A k C x A
28 27 ex φ x y = j k j A k C x A
29 28 exlimdvv φ j k x y = j k j A k C x A
30 22 29 syl5bi φ x y j A j × C x A
31 30 exlimdv φ y x y j A j × C x A
32 21 31 syl5bi φ x dom j A j × C x A
33 32 ssrdv φ dom j A j × C A
34 6 ralrimivva φ j A k C X B
35 eqid j A , k C X = j A , k C X
36 35 fmpox j A k C X B j A , k C X : j A j × C B
37 34 36 sylib φ j A , k C X : j A j × C B
38 1 2 3 4 5 6 7 8 gsum2d2lem φ finSupp 0 ˙ j A , k C X
39 1 2 3 14 19 4 33 37 38 gsum2d φ G j A , k C X = G m A G n j A j × C m m j A , k C X n
40 nfcv _ j G
41 nfcv _ j Σ𝑔
42 nfiu1 _ j j A j × C
43 nfcv _ j m
44 42 43 nfima _ j j A j × C m
45 nfcv _ j m
46 nfmpo1 _ j j A , k C X
47 nfcv _ j n
48 45 46 47 nfov _ j m j A , k C X n
49 44 48 nfmpt _ j n j A j × C m m j A , k C X n
50 40 41 49 nfov _ j G n j A j × C m m j A , k C X n
51 nfcv _ m G n j A j × C j j j A , k C X n
52 sneq m = j m = j
53 52 imaeq2d m = j j A j × C m = j A j × C j
54 oveq1 m = j m j A , k C X n = j j A , k C X n
55 53 54 mpteq12dv m = j n j A j × C m m j A , k C X n = n j A j × C j j j A , k C X n
56 55 oveq2d m = j G n j A j × C m m j A , k C X n = G n j A j × C j j j A , k C X n
57 50 51 56 cbvmpt m A G n j A j × C m m j A , k C X n = j A G n j A j × C j j j A , k C X n
58 vex j V
59 vex k V
60 58 59 elimasn k j A j × C j j k j A j × C
61 opeliunxp j k j A j × C j A k C
62 60 61 bitri k j A j × C j j A k C
63 62 baib j A k j A j × C j k C
64 63 eqrdv j A j A j × C j = C
65 64 mpteq1d j A n j A j × C j j j A , k C X n = n C j j A , k C X n
66 nfcv _ k j
67 nfmpo2 _ k j A , k C X
68 nfcv _ k n
69 66 67 68 nfov _ k j j A , k C X n
70 nfcv _ n j j A , k C X k
71 oveq2 n = k j j A , k C X n = j j A , k C X k
72 69 70 71 cbvmpt n C j j A , k C X n = k C j j A , k C X k
73 65 72 eqtrdi j A n j A j × C j j j A , k C X n = k C j j A , k C X k
74 73 adantl φ j A n j A j × C j j j A , k C X n = k C j j A , k C X k
75 simprl φ j A k C j A
76 simprr φ j A k C k C
77 35 ovmpt4g j A k C X B j j A , k C X k = X
78 75 76 6 77 syl3anc φ j A k C j j A , k C X k = X
79 78 anassrs φ j A k C j j A , k C X k = X
80 79 mpteq2dva φ j A k C j j A , k C X k = k C X
81 74 80 eqtrd φ j A n j A j × C j j j A , k C X n = k C X
82 81 oveq2d φ j A G n j A j × C j j j A , k C X n = G k C X
83 82 mpteq2dva φ j A G n j A j × C j j j A , k C X n = j A G k C X
84 57 83 syl5eq φ m A G n j A j × C m m j A , k C X n = j A G k C X
85 84 oveq2d φ G m A G n j A j × C m m j A , k C X n = G j A G k C X
86 39 85 eqtrd φ G j A , k C X = G j A G k C X