Step |
Hyp |
Ref |
Expression |
1 |
|
gsum2d2.b |
|
2 |
|
gsum2d2.z |
|
3 |
|
gsum2d2.g |
|
4 |
|
gsum2d2.a |
|
5 |
|
gsum2d2.r |
|
6 |
|
gsum2d2.f |
|
7 |
|
gsum2d2.u |
|
8 |
|
gsum2d2.n |
|
9 |
|
eqid |
|
10 |
9
|
mpofun |
|
11 |
10
|
a1i |
|
12 |
6
|
ralrimivva |
|
13 |
9
|
fmpox |
|
14 |
12 13
|
sylib |
|
15 |
|
nfv |
|
16 |
|
nfiu1 |
|
17 |
|
nfcv |
|
18 |
16 17
|
nfdif |
|
19 |
18
|
nfcri |
|
20 |
15 19
|
nfan |
|
21 |
|
nfmpo1 |
|
22 |
|
nfcv |
|
23 |
21 22
|
nffv |
|
24 |
23
|
nfeq1 |
|
25 |
|
relxp |
|
26 |
25
|
rgenw |
|
27 |
|
reliun |
|
28 |
26 27
|
mpbir |
|
29 |
|
eldifi |
|
30 |
29
|
adantl |
|
31 |
|
elrel |
|
32 |
28 30 31
|
sylancr |
|
33 |
|
nfv |
|
34 |
|
nfmpo2 |
|
35 |
|
nfcv |
|
36 |
34 35
|
nffv |
|
37 |
36
|
nfeq1 |
|
38 |
|
simprr |
|
39 |
38
|
fveq2d |
|
40 |
|
df-ov |
|
41 |
|
simprl |
|
42 |
38 41
|
eqeltrrd |
|
43 |
42
|
eldifad |
|
44 |
|
opeliunxp |
|
45 |
43 44
|
sylib |
|
46 |
45
|
simpld |
|
47 |
45
|
simprd |
|
48 |
45 6
|
syldan |
|
49 |
9
|
ovmpt4g |
|
50 |
46 47 48 49
|
syl3anc |
|
51 |
40 50
|
eqtr3id |
|
52 |
|
eldifn |
|
53 |
52
|
ad2antrl |
|
54 |
38
|
eleq1d |
|
55 |
|
df-br |
|
56 |
54 55
|
bitr4di |
|
57 |
53 56
|
mtbid |
|
58 |
45 57
|
jca |
|
59 |
58 8
|
syldan |
|
60 |
39 51 59
|
3eqtrd |
|
61 |
60
|
expr |
|
62 |
33 37 61
|
exlimd |
|
63 |
20 24 32 62
|
exlimimdd |
|
64 |
14 63
|
suppss |
|
65 |
7 64
|
ssfid |
|
66 |
5
|
ralrimiva |
|
67 |
9
|
mpoexxg |
|
68 |
4 66 67
|
syl2anc |
|
69 |
2
|
fvexi |
|
70 |
69
|
a1i |
|
71 |
|
isfsupp |
|
72 |
68 70 71
|
syl2anc |
|
73 |
11 65 72
|
mpbir2and |
|