Metamath Proof Explorer


Theorem gsum2dlem1

Description: Lemma 1 for gsum2d . (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by AV, 8-Jun-2019)

Ref Expression
Hypotheses gsum2d.b B = Base G
gsum2d.z 0 ˙ = 0 G
gsum2d.g φ G CMnd
gsum2d.a φ A V
gsum2d.r φ Rel A
gsum2d.d φ D W
gsum2d.s φ dom A D
gsum2d.f φ F : A B
gsum2d.w φ finSupp 0 ˙ F
Assertion gsum2dlem1 φ G k A j j F k B

Proof

Step Hyp Ref Expression
1 gsum2d.b B = Base G
2 gsum2d.z 0 ˙ = 0 G
3 gsum2d.g φ G CMnd
4 gsum2d.a φ A V
5 gsum2d.r φ Rel A
6 gsum2d.d φ D W
7 gsum2d.s φ dom A D
8 gsum2d.f φ F : A B
9 gsum2d.w φ finSupp 0 ˙ F
10 imaexg A V A j V
11 4 10 syl φ A j V
12 vex j V
13 vex k V
14 12 13 elimasn k A j j k A
15 df-ov j F k = F j k
16 8 ffvelrnda φ j k A F j k B
17 15 16 eqeltrid φ j k A j F k B
18 14 17 sylan2b φ k A j j F k B
19 18 fmpttd φ k A j j F k : A j B
20 9 fsuppimpd φ F supp 0 ˙ Fin
21 rnfi F supp 0 ˙ Fin ran supp 0 ˙ F Fin
22 20 21 syl φ ran supp 0 ˙ F Fin
23 14 biimpi k A j j k A
24 12 13 opelrn j k supp 0 ˙ F k ran supp 0 ˙ F
25 24 con3i ¬ k ran supp 0 ˙ F ¬ j k supp 0 ˙ F
26 23 25 anim12i k A j ¬ k ran supp 0 ˙ F j k A ¬ j k supp 0 ˙ F
27 eldif k A j ran supp 0 ˙ F k A j ¬ k ran supp 0 ˙ F
28 eldif j k A supp 0 ˙ F j k A ¬ j k supp 0 ˙ F
29 26 27 28 3imtr4i k A j ran supp 0 ˙ F j k A supp 0 ˙ F
30 ssidd φ F supp 0 ˙ F supp 0 ˙
31 2 fvexi 0 ˙ V
32 31 a1i φ 0 ˙ V
33 8 30 4 32 suppssr φ j k A supp 0 ˙ F F j k = 0 ˙
34 15 33 eqtrid φ j k A supp 0 ˙ F j F k = 0 ˙
35 29 34 sylan2 φ k A j ran supp 0 ˙ F j F k = 0 ˙
36 35 11 suppss2 φ k A j j F k supp 0 ˙ ran supp 0 ˙ F
37 22 36 ssfid φ k A j j F k supp 0 ˙ Fin
38 1 2 3 11 19 37 gsumcl2 φ G k A j j F k B