Step |
Hyp |
Ref |
Expression |
1 |
|
gsum2d.b |
|
2 |
|
gsum2d.z |
|
3 |
|
gsum2d.g |
|
4 |
|
gsum2d.a |
|
5 |
|
gsum2d.r |
|
6 |
|
gsum2d.d |
|
7 |
|
gsum2d.s |
|
8 |
|
gsum2d.f |
|
9 |
|
gsum2d.w |
|
10 |
|
imaexg |
|
11 |
4 10
|
syl |
|
12 |
|
vex |
|
13 |
|
vex |
|
14 |
12 13
|
elimasn |
|
15 |
|
df-ov |
|
16 |
8
|
ffvelrnda |
|
17 |
15 16
|
eqeltrid |
|
18 |
14 17
|
sylan2b |
|
19 |
18
|
fmpttd |
|
20 |
9
|
fsuppimpd |
|
21 |
|
rnfi |
|
22 |
20 21
|
syl |
|
23 |
14
|
biimpi |
|
24 |
12 13
|
opelrn |
|
25 |
24
|
con3i |
|
26 |
23 25
|
anim12i |
|
27 |
|
eldif |
|
28 |
|
eldif |
|
29 |
26 27 28
|
3imtr4i |
|
30 |
|
ssidd |
|
31 |
2
|
fvexi |
|
32 |
31
|
a1i |
|
33 |
8 30 4 32
|
suppssr |
|
34 |
15 33
|
eqtrid |
|
35 |
29 34
|
sylan2 |
|
36 |
35 11
|
suppss2 |
|
37 |
22 36
|
ssfid |
|
38 |
1 2 3 11 19 37
|
gsumcl2 |
|