Step |
Hyp |
Ref |
Expression |
1 |
|
gsum2d.b |
|
2 |
|
gsum2d.z |
|
3 |
|
gsum2d.g |
|
4 |
|
gsum2d.a |
|
5 |
|
gsum2d.r |
|
6 |
|
gsum2d.d |
|
7 |
|
gsum2d.s |
|
8 |
|
gsum2d.f |
|
9 |
|
gsum2d.w |
|
10 |
9
|
fsuppimpd |
|
11 |
|
dmfi |
|
12 |
10 11
|
syl |
|
13 |
|
reseq2 |
|
14 |
|
res0 |
|
15 |
13 14
|
eqtrdi |
|
16 |
15
|
reseq2d |
|
17 |
|
res0 |
|
18 |
16 17
|
eqtrdi |
|
19 |
18
|
oveq2d |
|
20 |
|
mpteq1 |
|
21 |
|
mpt0 |
|
22 |
20 21
|
eqtrdi |
|
23 |
22
|
oveq2d |
|
24 |
19 23
|
eqeq12d |
|
25 |
24
|
imbi2d |
|
26 |
|
reseq2 |
|
27 |
26
|
reseq2d |
|
28 |
27
|
oveq2d |
|
29 |
|
mpteq1 |
|
30 |
29
|
oveq2d |
|
31 |
28 30
|
eqeq12d |
|
32 |
31
|
imbi2d |
|
33 |
|
reseq2 |
|
34 |
33
|
reseq2d |
|
35 |
34
|
oveq2d |
|
36 |
|
mpteq1 |
|
37 |
36
|
oveq2d |
|
38 |
35 37
|
eqeq12d |
|
39 |
38
|
imbi2d |
|
40 |
|
reseq2 |
|
41 |
40
|
reseq2d |
|
42 |
41
|
oveq2d |
|
43 |
|
mpteq1 |
|
44 |
43
|
oveq2d |
|
45 |
42 44
|
eqeq12d |
|
46 |
45
|
imbi2d |
|
47 |
|
eqidd |
|
48 |
|
oveq1 |
|
49 |
|
eqid |
|
50 |
3
|
adantr |
|
51 |
4
|
resexd |
|
52 |
51
|
adantr |
|
53 |
|
resss |
|
54 |
|
fssres |
|
55 |
8 53 54
|
sylancl |
|
56 |
55
|
adantr |
|
57 |
8
|
ffund |
|
58 |
57
|
funresd |
|
59 |
58
|
adantr |
|
60 |
10
|
adantr |
|
61 |
8 4
|
fexd |
|
62 |
2
|
fvexi |
|
63 |
|
ressuppss |
|
64 |
61 62 63
|
sylancl |
|
65 |
64
|
adantr |
|
66 |
60 65
|
ssfid |
|
67 |
61
|
resexd |
|
68 |
|
isfsupp |
|
69 |
67 62 68
|
sylancl |
|
70 |
69
|
adantr |
|
71 |
59 66 70
|
mpbir2and |
|
72 |
|
simprr |
|
73 |
|
disjsn |
|
74 |
72 73
|
sylibr |
|
75 |
74
|
reseq2d |
|
76 |
|
resindi |
|
77 |
75 76 14
|
3eqtr3g |
|
78 |
|
resundi |
|
79 |
78
|
a1i |
|
80 |
1 2 49 50 52 56 71 77 79
|
gsumsplit |
|
81 |
|
ssun1 |
|
82 |
|
ssres2 |
|
83 |
|
resabs1 |
|
84 |
81 82 83
|
mp2b |
|
85 |
84
|
oveq2i |
|
86 |
|
ssun2 |
|
87 |
|
ssres2 |
|
88 |
|
resabs1 |
|
89 |
86 87 88
|
mp2b |
|
90 |
89
|
oveq2i |
|
91 |
85 90
|
oveq12i |
|
92 |
80 91
|
eqtrdi |
|
93 |
|
simprl |
|
94 |
1 2 3 4 5 6 7 8 9
|
gsum2dlem1 |
|
95 |
94
|
ad2antrr |
|
96 |
|
vex |
|
97 |
96
|
a1i |
|
98 |
|
sneq |
|
99 |
98
|
imaeq2d |
|
100 |
|
oveq1 |
|
101 |
99 100
|
mpteq12dv |
|
102 |
101
|
oveq2d |
|
103 |
102
|
eleq1d |
|
104 |
103
|
imbi2d |
|
105 |
104 94
|
chvarvv |
|
106 |
105
|
adantr |
|
107 |
1 49 50 93 95 97 72 106 102
|
gsumunsn |
|
108 |
98
|
reseq2d |
|
109 |
108
|
reseq2d |
|
110 |
109
|
oveq2d |
|
111 |
102 110
|
eqeq12d |
|
112 |
111
|
imbi2d |
|
113 |
|
imaexg |
|
114 |
4 113
|
syl |
|
115 |
|
vex |
|
116 |
|
vex |
|
117 |
115 116
|
elimasn |
|
118 |
|
df-ov |
|
119 |
8
|
ffvelrnda |
|
120 |
118 119
|
eqeltrid |
|
121 |
117 120
|
sylan2b |
|
122 |
121
|
fmpttd |
|
123 |
|
funmpt |
|
124 |
123
|
a1i |
|
125 |
|
rnfi |
|
126 |
10 125
|
syl |
|
127 |
117
|
biimpi |
|
128 |
115 116
|
opelrn |
|
129 |
128
|
con3i |
|
130 |
127 129
|
anim12i |
|
131 |
|
eldif |
|
132 |
|
eldif |
|
133 |
130 131 132
|
3imtr4i |
|
134 |
|
ssidd |
|
135 |
62
|
a1i |
|
136 |
8 134 4 135
|
suppssr |
|
137 |
118 136
|
eqtrid |
|
138 |
133 137
|
sylan2 |
|
139 |
138 114
|
suppss2 |
|
140 |
126 139
|
ssfid |
|
141 |
114
|
mptexd |
|
142 |
|
isfsupp |
|
143 |
141 62 142
|
sylancl |
|
144 |
124 140 143
|
mpbir2and |
|
145 |
|
2ndconst |
|
146 |
115 145
|
mp1i |
|
147 |
1 2 3 114 122 144 146
|
gsumf1o |
|
148 |
|
1st2nd2 |
|
149 |
|
xp1st |
|
150 |
|
elsni |
|
151 |
149 150
|
syl |
|
152 |
151
|
opeq1d |
|
153 |
148 152
|
eqtrd |
|
154 |
153
|
fveq2d |
|
155 |
|
df-ov |
|
156 |
154 155
|
eqtr4di |
|
157 |
156
|
mpteq2ia |
|
158 |
8
|
feqmptd |
|
159 |
158
|
reseq1d |
|
160 |
|
resss |
|
161 |
|
resmpt |
|
162 |
160 161
|
ax-mp |
|
163 |
|
ressn |
|
164 |
163
|
mpteq1i |
|
165 |
162 164
|
eqtri |
|
166 |
159 165
|
eqtrdi |
|
167 |
|
xp2nd |
|
168 |
167
|
adantl |
|
169 |
|
fo2nd |
|
170 |
|
fof |
|
171 |
169 170
|
mp1i |
|
172 |
171
|
feqmptd |
|
173 |
172
|
reseq1d |
|
174 |
|
ssv |
|
175 |
|
resmpt |
|
176 |
174 175
|
ax-mp |
|
177 |
173 176
|
eqtrdi |
|
178 |
|
eqidd |
|
179 |
|
oveq2 |
|
180 |
168 177 178 179
|
fmptco |
|
181 |
157 166 180
|
3eqtr4a |
|
182 |
181
|
oveq2d |
|
183 |
147 182
|
eqtr4d |
|
184 |
112 183
|
chvarvv |
|
185 |
184
|
adantr |
|
186 |
185
|
oveq2d |
|
187 |
107 186
|
eqtrd |
|
188 |
92 187
|
eqeq12d |
|
189 |
48 188
|
syl5ibr |
|
190 |
189
|
expcom |
|
191 |
190
|
a2d |
|
192 |
25 32 39 46 47 191
|
findcard2s |
|
193 |
12 192
|
mpcom |
|