Description: The sum of two group sums. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Mario Carneiro, 25-Apr-2016) (Revised by AV, 5-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumadd.b | |
|
| gsumadd.z | |
||
| gsumadd.p | |
||
| gsumadd.g | |
||
| gsumadd.a | |
||
| gsumadd.f | |
||
| gsumadd.h | |
||
| gsumadd.fn | |
||
| gsumadd.hn | |
||
| Assertion | gsumadd | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumadd.b | |
|
| 2 | gsumadd.z | |
|
| 3 | gsumadd.p | |
|
| 4 | gsumadd.g | |
|
| 5 | gsumadd.a | |
|
| 6 | gsumadd.f | |
|
| 7 | gsumadd.h | |
|
| 8 | gsumadd.fn | |
|
| 9 | gsumadd.hn | |
|
| 10 | eqid | |
|
| 11 | cmnmnd | |
|
| 12 | 4 11 | syl | |
| 13 | 1 | submid | |
| 14 | 12 13 | syl | |
| 15 | ssid | |
|
| 16 | 1 10 | cntzcmn | |
| 17 | 4 15 16 | sylancl | |
| 18 | 15 17 | sseqtrrid | |
| 19 | 1 2 3 10 12 5 8 9 14 18 6 7 | gsumzadd | |