Metamath Proof Explorer


Theorem gsumbagdiaglemOLD

Description: Obsolete version of gsumbagdiaglem as of 6-Aug-2024. (Contributed by Mario Carneiro, 5-Jan-2015) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses psrbag.d D=f0I|f-1Fin
psrbagconf1o.s S=yD|yfF
gsumbagdiagOLD.i φIV
gsumbagdiagOLD.f φFD
Assertion gsumbagdiaglemOLD φXSYxD|xfFfXYSXxD|xfFfY

Proof

Step Hyp Ref Expression
1 psrbag.d D=f0I|f-1Fin
2 psrbagconf1o.s S=yD|yfF
3 gsumbagdiagOLD.i φIV
4 gsumbagdiagOLD.f φFD
5 simprr φXSYxD|xfFfXYxD|xfFfX
6 breq1 x=YxfFfXYfFfX
7 6 elrab YxD|xfFfXYDYfFfX
8 5 7 sylib φXSYxD|xfFfXYDYfFfX
9 8 simpld φXSYxD|xfFfXYD
10 8 simprd φXSYxD|xfFfXYfFfX
11 3 adantr φXSYxD|xfFfXIV
12 4 adantr φXSYxD|xfFfXFD
13 simprl φXSYxD|xfFfXXS
14 breq1 y=XyfFXfF
15 14 2 elrab2 XSXDXfF
16 13 15 sylib φXSYxD|xfFfXXDXfF
17 16 simpld φXSYxD|xfFfXXD
18 1 psrbagfOLD IVXDX:I0
19 11 17 18 syl2anc φXSYxD|xfFfXX:I0
20 16 simprd φXSYxD|xfFfXXfF
21 1 psrbagconOLD IVFDX:I0XfFFfXDFfXfF
22 11 12 19 20 21 syl13anc φXSYxD|xfFfXFfXDFfXfF
23 22 simprd φXSYxD|xfFfXFfXfF
24 1 psrbagfOLD IVYDY:I0
25 11 9 24 syl2anc φXSYxD|xfFfXY:I0
26 22 simpld φXSYxD|xfFfXFfXD
27 1 psrbagfOLD IVFfXDFfX:I0
28 11 26 27 syl2anc φXSYxD|xfFfXFfX:I0
29 1 psrbagfOLD IVFDF:I0
30 11 12 29 syl2anc φXSYxD|xfFfXF:I0
31 nn0re u0u
32 nn0re v0v
33 nn0re w0w
34 letr uvwuvvwuw
35 31 32 33 34 syl3an u0v0w0uvvwuw
36 35 adantl φXSYxD|xfFfXu0v0w0uvvwuw
37 11 25 28 30 36 caoftrn φXSYxD|xfFfXYfFfXFfXfFYfF
38 10 23 37 mp2and φXSYxD|xfFfXYfF
39 breq1 y=YyfFYfF
40 39 2 elrab2 YSYDYfF
41 9 38 40 sylanbrc φXSYxD|xfFfXYS
42 breq1 x=XxfFfYXfFfY
43 19 ffvelcdmda φXSYxD|xfFfXzIXz0
44 25 ffvelcdmda φXSYxD|xfFfXzIYz0
45 30 ffvelcdmda φXSYxD|xfFfXzIFz0
46 nn0re Xz0Xz
47 nn0re Yz0Yz
48 nn0re Fz0Fz
49 leaddsub2 XzYzFzXz+YzFzYzFzXz
50 leaddsub XzYzFzXz+YzFzXzFzYz
51 49 50 bitr3d XzYzFzYzFzXzXzFzYz
52 46 47 48 51 syl3an Xz0Yz0Fz0YzFzXzXzFzYz
53 43 44 45 52 syl3anc φXSYxD|xfFfXzIYzFzXzXzFzYz
54 53 ralbidva φXSYxD|xfFfXzIYzFzXzzIXzFzYz
55 ovexd φXSYxD|xfFfXzIFzXzV
56 25 feqmptd φXSYxD|xfFfXY=zIYz
57 30 ffnd φXSYxD|xfFfXFFnI
58 19 ffnd φXSYxD|xfFfXXFnI
59 inidm II=I
60 eqidd φXSYxD|xfFfXzIFz=Fz
61 eqidd φXSYxD|xfFfXzIXz=Xz
62 57 58 11 11 59 60 61 offval φXSYxD|xfFfXFfX=zIFzXz
63 11 44 55 56 62 ofrfval2 φXSYxD|xfFfXYfFfXzIYzFzXz
64 ovexd φXSYxD|xfFfXzIFzYzV
65 19 feqmptd φXSYxD|xfFfXX=zIXz
66 25 ffnd φXSYxD|xfFfXYFnI
67 eqidd φXSYxD|xfFfXzIYz=Yz
68 57 66 11 11 59 60 67 offval φXSYxD|xfFfXFfY=zIFzYz
69 11 43 64 65 68 ofrfval2 φXSYxD|xfFfXXfFfYzIXzFzYz
70 54 63 69 3bitr4d φXSYxD|xfFfXYfFfXXfFfY
71 10 70 mpbid φXSYxD|xfFfXXfFfY
72 42 17 71 elrabd φXSYxD|xfFfXXxD|xfFfY
73 41 72 jca φXSYxD|xfFfXYSXxD|xfFfY