| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumccat.b |  | 
						
							| 2 |  | gsumccat.p |  | 
						
							| 3 |  | oveq1 |  | 
						
							| 4 | 3 | oveq2d |  | 
						
							| 5 |  | oveq2 |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 | 6 | gsum0 |  | 
						
							| 8 | 5 7 | eqtrdi |  | 
						
							| 9 | 8 | oveq1d |  | 
						
							| 10 | 4 9 | eqeq12d |  | 
						
							| 11 |  | oveq2 |  | 
						
							| 12 | 11 | oveq2d |  | 
						
							| 13 |  | oveq2 |  | 
						
							| 14 | 13 7 | eqtrdi |  | 
						
							| 15 | 14 | oveq2d |  | 
						
							| 16 | 12 15 | eqeq12d |  | 
						
							| 17 |  | mndsgrp |  | 
						
							| 18 | 17 | 3ad2ant1 |  | 
						
							| 19 | 18 | ad2antrr |  | 
						
							| 20 |  | 3simpc |  | 
						
							| 21 | 20 | ad2antrr |  | 
						
							| 22 |  | simpr |  | 
						
							| 23 | 22 | anim1i |  | 
						
							| 24 | 1 2 | gsumsgrpccat |  | 
						
							| 25 | 19 21 23 24 | syl3anc |  | 
						
							| 26 |  | simpl2 |  | 
						
							| 27 |  | ccatrid |  | 
						
							| 28 | 26 27 | syl |  | 
						
							| 29 | 28 | oveq2d |  | 
						
							| 30 |  | simpl1 |  | 
						
							| 31 | 1 | gsumwcl |  | 
						
							| 32 | 31 | 3adant3 |  | 
						
							| 33 | 32 | adantr |  | 
						
							| 34 | 1 2 6 | mndrid |  | 
						
							| 35 | 30 33 34 | syl2anc |  | 
						
							| 36 | 29 35 | eqtr4d |  | 
						
							| 37 | 16 25 36 | pm2.61ne |  | 
						
							| 38 |  | ccatlid |  | 
						
							| 39 | 38 | 3ad2ant3 |  | 
						
							| 40 | 39 | oveq2d |  | 
						
							| 41 |  | simp1 |  | 
						
							| 42 | 1 | gsumwcl |  | 
						
							| 43 | 1 2 6 | mndlid |  | 
						
							| 44 | 41 42 43 | 3imp3i2an |  | 
						
							| 45 | 40 44 | eqtr4d |  | 
						
							| 46 | 10 37 45 | pm2.61ne |  |