Database
BASIC ALGEBRAIC STRUCTURES
Monoids
Iterated sums in a monoid
gsumccatsn
Next ⟩
gsumspl
Metamath Proof Explorer
Ascii
Unicode
Theorem
gsumccatsn
Description:
Homomorphic property of composites with a singleton.
(Contributed by
AV
, 20-Jan-2019)
Ref
Expression
Hypotheses
gsumccat.b
⊢
B
=
Base
G
gsumccat.p
⊢
+
˙
=
+
G
Assertion
gsumccatsn
⊢
G
∈
Mnd
∧
W
∈
Word
B
∧
Z
∈
B
→
∑
G
W
++
〈“
Z
”〉
=
∑
G
W
+
˙
Z
Proof
Step
Hyp
Ref
Expression
1
gsumccat.b
⊢
B
=
Base
G
2
gsumccat.p
⊢
+
˙
=
+
G
3
s1cl
⊢
Z
∈
B
→
〈“
Z
”〉
∈
Word
B
4
1
2
gsumccat
⊢
G
∈
Mnd
∧
W
∈
Word
B
∧
〈“
Z
”〉
∈
Word
B
→
∑
G
W
++
〈“
Z
”〉
=
∑
G
W
+
˙
∑
G
〈“
Z
”〉
5
3
4
syl3an3
⊢
G
∈
Mnd
∧
W
∈
Word
B
∧
Z
∈
B
→
∑
G
W
++
〈“
Z
”〉
=
∑
G
W
+
˙
∑
G
〈“
Z
”〉
6
1
gsumws1
⊢
Z
∈
B
→
∑
G
〈“
Z
”〉
=
Z
7
6
3ad2ant3
⊢
G
∈
Mnd
∧
W
∈
Word
B
∧
Z
∈
B
→
∑
G
〈“
Z
”〉
=
Z
8
7
oveq2d
⊢
G
∈
Mnd
∧
W
∈
Word
B
∧
Z
∈
B
→
∑
G
W
+
˙
∑
G
〈“
Z
”〉
=
∑
G
W
+
˙
Z
9
5
8
eqtrd
⊢
G
∈
Mnd
∧
W
∈
Word
B
∧
Z
∈
B
→
∑
G
W
++
〈“
Z
”〉
=
∑
G
W
+
˙
Z