Metamath Proof Explorer


Theorem gsumccatsymgsn

Description: Homomorphic property of composites of permutations with a singleton. (Contributed by AV, 20-Jan-2019)

Ref Expression
Hypotheses gsumccatsymgsn.g G=SymGrpA
gsumccatsymgsn.b B=BaseG
Assertion gsumccatsymgsn AVWWordBZBGW++⟨“Z”⟩=GWZ

Proof

Step Hyp Ref Expression
1 gsumccatsymgsn.g G=SymGrpA
2 gsumccatsymgsn.b B=BaseG
3 1 symggrp AVGGrp
4 3 grpmndd AVGMnd
5 eqid +G=+G
6 2 5 gsumccatsn GMndWWordBZBGW++⟨“Z”⟩=GW+GZ
7 4 6 syl3an1 AVWWordBZBGW++⟨“Z”⟩=GW+GZ
8 4 3ad2ant1 AVWWordBZBGMnd
9 simp2 AVWWordBZBWWordB
10 2 gsumwcl GMndWWordBGWB
11 8 9 10 syl2anc AVWWordBZBGWB
12 simp3 AVWWordBZBZB
13 1 2 5 symgov GWBZBGW+GZ=GWZ
14 11 12 13 syl2anc AVWWordBZBGW+GZ=GWZ
15 7 14 eqtrd AVWWordBZBGW++⟨“Z”⟩=GWZ