Metamath Proof Explorer


Theorem gsumccatsymgsn

Description: Homomorphic property of composites of permutations with a singleton. (Contributed by AV, 20-Jan-2019)

Ref Expression
Hypotheses gsumccatsymgsn.g G = SymGrp A
gsumccatsymgsn.b B = Base G
Assertion gsumccatsymgsn A V W Word B Z B G W ++ ⟨“ Z ”⟩ = G W Z

Proof

Step Hyp Ref Expression
1 gsumccatsymgsn.g G = SymGrp A
2 gsumccatsymgsn.b B = Base G
3 1 symggrp A V G Grp
4 3 grpmndd A V G Mnd
5 eqid + G = + G
6 2 5 gsumccatsn G Mnd W Word B Z B G W ++ ⟨“ Z ”⟩ = G W + G Z
7 4 6 syl3an1 A V W Word B Z B G W ++ ⟨“ Z ”⟩ = G W + G Z
8 4 3ad2ant1 A V W Word B Z B G Mnd
9 simp2 A V W Word B Z B W Word B
10 2 gsumwcl G Mnd W Word B G W B
11 8 9 10 syl2anc A V W Word B Z B G W B
12 simp3 A V W Word B Z B Z B
13 1 2 5 symgov G W B Z B G W + G Z = G W Z
14 11 12 13 syl2anc A V W Word B Z B G W + G Z = G W Z
15 7 14 eqtrd A V W Word B Z B G W ++ ⟨“ Z ”⟩ = G W Z