Metamath Proof Explorer


Theorem gsumcl2

Description: Closure of a finite group sum. This theorem has a weaker hypothesis than gsumcl , because it is not required that F is a function (actually, the hypothesis always holds for any proper class F ). (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by Mario Carneiro, 24-Apr-2016) (Revised by AV, 3-Jun-2019)

Ref Expression
Hypotheses gsumcl.b B = Base G
gsumcl.z 0 ˙ = 0 G
gsumcl.g φ G CMnd
gsumcl.a φ A V
gsumcl.f φ F : A B
gsumcl2.w φ F supp 0 ˙ Fin
Assertion gsumcl2 φ G F B

Proof

Step Hyp Ref Expression
1 gsumcl.b B = Base G
2 gsumcl.z 0 ˙ = 0 G
3 gsumcl.g φ G CMnd
4 gsumcl.a φ A V
5 gsumcl.f φ F : A B
6 gsumcl2.w φ F supp 0 ˙ Fin
7 eqid Cntz G = Cntz G
8 cmnmnd G CMnd G Mnd
9 3 8 syl φ G Mnd
10 1 7 3 5 cntzcmnf φ ran F Cntz G ran F
11 1 2 7 9 4 5 10 6 gsumzcl2 φ G F B